Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Related tags

Deep Learningmtl-ssl
Overview

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019)

To make better use of given limited labels, we propose a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection.

Here is a guide to the source code.

Reference

If you are willing to use this code or cite the paper, please refer the following:

@inproceedings{lee2019multi,
 author = {Wonhee Lee and Joonil Na and Gunhee Kim},
 title = {Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 year = {2019}
}

CVPR Poster [PPT][PDF]

Introduction [PPT][PDF]

Multi-task Learning

Multi-task learning (MTL) aims at jointly training multiple relevant tasks with less annotations to improve the performance of each task.

[1] An Overview of Multi-Task Learning in Deep Neural Networks

[2] Mask R-CNN

Self-supervised Learning

Self-supervised learning (SSL) aims at training the model from the annotations generated by itself with no additional human effort.

[3] Learning Representations for Automatic Colorization

[4] Unsupervised learning of visual representations by solving jigsaw puzzles

Annotation Reuse

Reusing labels of one task is not only helpful to create new tasks and their labels but also capable of improving the performance of the main task through pretraining. Our work focuses on recycling bounding box labels for object detection.

[5] Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

[6] Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

Our approach

The key to our approach is to propose a set of auxiliary tasks that are relevant but not identical to object detection. They create their own labels by recycling the bounding box labels (e.g. annotations of the main task) in an SSL manner while regarding the bounding box as metadata. Then these auxiliary tasks are jointly trained with the object detection model in an MTL way.

Approach

Overall architecture

It shows how the object detector (i.e. main task model) such as Faster R-CNN makes a prediction for a given proposal box (red) with assistance of three auxiliary tasks at inference. The auxiliary task models (shown in the bottom right) are almost identical to the main task predictor except no box regressor. The refinement of detection prediction (shown in right) is also collectively done by cooperation of the main and auxiliary task models. K is the number of categories.

3 auxiliary tasks

This is an example of how to generate labels of auxiliary tasks via recycling of GT bounding boxes.

  • The multi-object soft label assigns the area portions occupied by each class’s GT boxes within a window.
  • The closeness label scores the distances from the center of the GT box to those of other GT boxes.
  • The foreground label is a binary mask between foreground and background.

Results

We empirically validate that our approach effectively improves detection performance on various architectures and datasets. We test two state-of-the-art region proposal object detectors, including Faster R-CNN and R-FCN, with three CNN backbones of ResNet-101, InceptionResNet-v2, and MobileNet on two benchmark datasets of PASCAL VOC and COCO.

Qualitative results

Qualitative comparison of detection results between baseline (left) and our approach (right) in each set. We divide the errors into five categories (Localization, Classification, Redundancy, Background, False Negative). Our approach often improves the baseline’s detection by correcting several false negatives and false positives such as background, similar object and redundant detection.

alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022