Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Related tags

Deep Learningmtl-ssl
Overview

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019)

To make better use of given limited labels, we propose a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection.

Here is a guide to the source code.

Reference

If you are willing to use this code or cite the paper, please refer the following:

@inproceedings{lee2019multi,
 author = {Wonhee Lee and Joonil Na and Gunhee Kim},
 title = {Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 year = {2019}
}

CVPR Poster [PPT][PDF]

Introduction [PPT][PDF]

Multi-task Learning

Multi-task learning (MTL) aims at jointly training multiple relevant tasks with less annotations to improve the performance of each task.

[1] An Overview of Multi-Task Learning in Deep Neural Networks

[2] Mask R-CNN

Self-supervised Learning

Self-supervised learning (SSL) aims at training the model from the annotations generated by itself with no additional human effort.

[3] Learning Representations for Automatic Colorization

[4] Unsupervised learning of visual representations by solving jigsaw puzzles

Annotation Reuse

Reusing labels of one task is not only helpful to create new tasks and their labels but also capable of improving the performance of the main task through pretraining. Our work focuses on recycling bounding box labels for object detection.

[5] Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

[6] Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

Our approach

The key to our approach is to propose a set of auxiliary tasks that are relevant but not identical to object detection. They create their own labels by recycling the bounding box labels (e.g. annotations of the main task) in an SSL manner while regarding the bounding box as metadata. Then these auxiliary tasks are jointly trained with the object detection model in an MTL way.

Approach

Overall architecture

It shows how the object detector (i.e. main task model) such as Faster R-CNN makes a prediction for a given proposal box (red) with assistance of three auxiliary tasks at inference. The auxiliary task models (shown in the bottom right) are almost identical to the main task predictor except no box regressor. The refinement of detection prediction (shown in right) is also collectively done by cooperation of the main and auxiliary task models. K is the number of categories.

3 auxiliary tasks

This is an example of how to generate labels of auxiliary tasks via recycling of GT bounding boxes.

  • The multi-object soft label assigns the area portions occupied by each class’s GT boxes within a window.
  • The closeness label scores the distances from the center of the GT box to those of other GT boxes.
  • The foreground label is a binary mask between foreground and background.

Results

We empirically validate that our approach effectively improves detection performance on various architectures and datasets. We test two state-of-the-art region proposal object detectors, including Faster R-CNN and R-FCN, with three CNN backbones of ResNet-101, InceptionResNet-v2, and MobileNet on two benchmark datasets of PASCAL VOC and COCO.

Qualitative results

Qualitative comparison of detection results between baseline (left) and our approach (right) in each set. We divide the errors into five categories (Localization, Classification, Redundancy, Background, False Negative). Our approach often improves the baseline’s detection by correcting several false negatives and false positives such as background, similar object and redundant detection.

113 Nov 28, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022