Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Related tags

Deep Learningmtl-ssl
Overview

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019)

To make better use of given limited labels, we propose a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection.

Here is a guide to the source code.

Reference

If you are willing to use this code or cite the paper, please refer the following:

@inproceedings{lee2019multi,
 author = {Wonhee Lee and Joonil Na and Gunhee Kim},
 title = {Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 year = {2019}
}

CVPR Poster [PPT][PDF]

Introduction [PPT][PDF]

Multi-task Learning

Multi-task learning (MTL) aims at jointly training multiple relevant tasks with less annotations to improve the performance of each task.

[1] An Overview of Multi-Task Learning in Deep Neural Networks

[2] Mask R-CNN

Self-supervised Learning

Self-supervised learning (SSL) aims at training the model from the annotations generated by itself with no additional human effort.

[3] Learning Representations for Automatic Colorization

[4] Unsupervised learning of visual representations by solving jigsaw puzzles

Annotation Reuse

Reusing labels of one task is not only helpful to create new tasks and their labels but also capable of improving the performance of the main task through pretraining. Our work focuses on recycling bounding box labels for object detection.

[5] Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

[6] Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

Our approach

The key to our approach is to propose a set of auxiliary tasks that are relevant but not identical to object detection. They create their own labels by recycling the bounding box labels (e.g. annotations of the main task) in an SSL manner while regarding the bounding box as metadata. Then these auxiliary tasks are jointly trained with the object detection model in an MTL way.

Approach

Overall architecture

It shows how the object detector (i.e. main task model) such as Faster R-CNN makes a prediction for a given proposal box (red) with assistance of three auxiliary tasks at inference. The auxiliary task models (shown in the bottom right) are almost identical to the main task predictor except no box regressor. The refinement of detection prediction (shown in right) is also collectively done by cooperation of the main and auxiliary task models. K is the number of categories.

3 auxiliary tasks

This is an example of how to generate labels of auxiliary tasks via recycling of GT bounding boxes.

  • The multi-object soft label assigns the area portions occupied by each class’s GT boxes within a window.
  • The closeness label scores the distances from the center of the GT box to those of other GT boxes.
  • The foreground label is a binary mask between foreground and background.

Results

We empirically validate that our approach effectively improves detection performance on various architectures and datasets. We test two state-of-the-art region proposal object detectors, including Faster R-CNN and R-FCN, with three CNN backbones of ResNet-101, InceptionResNet-v2, and MobileNet on two benchmark datasets of PASCAL VOC and COCO.

Qualitative results

Qualitative comparison of detection results between baseline (left) and our approach (right) in each set. We divide the errors into five categories (Localization, Classification, Redundancy, Background, False Negative). Our approach often improves the baseline’s detection by correcting several false negatives and false positives such as background, similar object and redundant detection.

Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022