Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

The ever-increasing 3D application makes the point cloud compression unprecedentedly important and needed. In this paper, we propose a patch-based compression process using deep learning, focusing on the lossy point cloud geometry compression. Unlike existing point cloud compression networks, which apply feature extraction and reconstruction on the entire point cloud, we divide the point cloud into patches and compress each patch independently. In the decoding process, we finally assemble the decompressed patches into a complete point cloud. In addition, we train our network by a patch-to-patch criterion, i.e., use the local reconstruction loss for optimization, to approximate the global reconstruction optimality. Our method outperforms the state-of-the-art in terms of rate-distortion performance, especially at low bitrates. Moreover, the compression process we proposed can guarantee to generate the same number of points as the input. The network model of this method can be easily applied to other point cloud reconstruction problems, such as upsampling.

Environment

Python 3.9.6 and Pytorch 1.9.0

Other dependencies:

pytorch3d 0.5.0 for KNN and chamfer loss: https://github.com/facebookresearch/pytorch3d

geo_dist for point to plane evaluation: https://github.com/mauriceqch/geo_dist

*For some unexpected reasons, we have rewritten the experimental code using a different environment and dependencies than in the paper. The training parameters and experimental results may be slightly different.

Data Preparation

You need ModelNet40 and ShapeNet to reproduce our results. The following steps will show you a general way to prepare point clouds in our experiment.

ModelNet40

  1. Download the ModelNet40 data: http://modelnet.cs.princeton.edu

  2. Convert CAD models(.off) to point clouds(.ply) by using sample_modelnet.py:

    python ./sample_modelnet.py ./data/ModelNet40 ./data/ModelNet40_pc_8192 --n_point 8192
    

ShapeNet

  1. Download the ShapeNet data here

  2. Sampling point clouds by using sample_shapenet.py:

    python ./sample_shapenet.py ./data/shapenetcore_partanno_segmentation_benchmark_v0_normal ./data/ShapeNet_pc_2048 --n_point 2048
    

Training

We use train_ae.py to train an autoencoder on ModelNet40 dataset:

python ./train_ae.py './data/ModelNet40_pc_8192/**/train/*.ply' './model/trained_128_16' --N 8192 --ALPHA 2 --K 128 --d 16

Compression and Decompression

We use compress.py and decompress.py to perform compress on point clouds using our trained autoencoder. Take the compression of ModelNet40 as an example:

python ./compress.py './model/trained_128_16' './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' --ALPHA 2
python ./decompress.py './model/trained_128_16' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16'

Evaluation

The Evaluation process uses the same software geo_dist as in Quach's code. We use eval.py to measure reconstruction quality and check the bitrate of the compressed file.

python ./eval.py ../geo_dist/build/pc_error './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16' './eval/ModelNet40_128_16.csv'
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022