Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

The ever-increasing 3D application makes the point cloud compression unprecedentedly important and needed. In this paper, we propose a patch-based compression process using deep learning, focusing on the lossy point cloud geometry compression. Unlike existing point cloud compression networks, which apply feature extraction and reconstruction on the entire point cloud, we divide the point cloud into patches and compress each patch independently. In the decoding process, we finally assemble the decompressed patches into a complete point cloud. In addition, we train our network by a patch-to-patch criterion, i.e., use the local reconstruction loss for optimization, to approximate the global reconstruction optimality. Our method outperforms the state-of-the-art in terms of rate-distortion performance, especially at low bitrates. Moreover, the compression process we proposed can guarantee to generate the same number of points as the input. The network model of this method can be easily applied to other point cloud reconstruction problems, such as upsampling.

Environment

Python 3.9.6 and Pytorch 1.9.0

Other dependencies:

pytorch3d 0.5.0 for KNN and chamfer loss: https://github.com/facebookresearch/pytorch3d

geo_dist for point to plane evaluation: https://github.com/mauriceqch/geo_dist

*For some unexpected reasons, we have rewritten the experimental code using a different environment and dependencies than in the paper. The training parameters and experimental results may be slightly different.

Data Preparation

You need ModelNet40 and ShapeNet to reproduce our results. The following steps will show you a general way to prepare point clouds in our experiment.

ModelNet40

  1. Download the ModelNet40 data: http://modelnet.cs.princeton.edu

  2. Convert CAD models(.off) to point clouds(.ply) by using sample_modelnet.py:

    python ./sample_modelnet.py ./data/ModelNet40 ./data/ModelNet40_pc_8192 --n_point 8192
    

ShapeNet

  1. Download the ShapeNet data here

  2. Sampling point clouds by using sample_shapenet.py:

    python ./sample_shapenet.py ./data/shapenetcore_partanno_segmentation_benchmark_v0_normal ./data/ShapeNet_pc_2048 --n_point 2048
    

Training

We use train_ae.py to train an autoencoder on ModelNet40 dataset:

python ./train_ae.py './data/ModelNet40_pc_8192/**/train/*.ply' './model/trained_128_16' --N 8192 --ALPHA 2 --K 128 --d 16

Compression and Decompression

We use compress.py and decompress.py to perform compress on point clouds using our trained autoencoder. Take the compression of ModelNet40 as an example:

python ./compress.py './model/trained_128_16' './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' --ALPHA 2
python ./decompress.py './model/trained_128_16' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16'

Evaluation

The Evaluation process uses the same software geo_dist as in Quach's code. We use eval.py to measure reconstruction quality and check the bitrate of the compressed file.

python ./eval.py ../geo_dist/build/pc_error './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16' './eval/ModelNet40_128_16.csv'
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022