Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

The ever-increasing 3D application makes the point cloud compression unprecedentedly important and needed. In this paper, we propose a patch-based compression process using deep learning, focusing on the lossy point cloud geometry compression. Unlike existing point cloud compression networks, which apply feature extraction and reconstruction on the entire point cloud, we divide the point cloud into patches and compress each patch independently. In the decoding process, we finally assemble the decompressed patches into a complete point cloud. In addition, we train our network by a patch-to-patch criterion, i.e., use the local reconstruction loss for optimization, to approximate the global reconstruction optimality. Our method outperforms the state-of-the-art in terms of rate-distortion performance, especially at low bitrates. Moreover, the compression process we proposed can guarantee to generate the same number of points as the input. The network model of this method can be easily applied to other point cloud reconstruction problems, such as upsampling.

Environment

Python 3.9.6 and Pytorch 1.9.0

Other dependencies:

pytorch3d 0.5.0 for KNN and chamfer loss: https://github.com/facebookresearch/pytorch3d

geo_dist for point to plane evaluation: https://github.com/mauriceqch/geo_dist

*For some unexpected reasons, we have rewritten the experimental code using a different environment and dependencies than in the paper. The training parameters and experimental results may be slightly different.

Data Preparation

You need ModelNet40 and ShapeNet to reproduce our results. The following steps will show you a general way to prepare point clouds in our experiment.

ModelNet40

  1. Download the ModelNet40 data: http://modelnet.cs.princeton.edu

  2. Convert CAD models(.off) to point clouds(.ply) by using sample_modelnet.py:

    python ./sample_modelnet.py ./data/ModelNet40 ./data/ModelNet40_pc_8192 --n_point 8192
    

ShapeNet

  1. Download the ShapeNet data here

  2. Sampling point clouds by using sample_shapenet.py:

    python ./sample_shapenet.py ./data/shapenetcore_partanno_segmentation_benchmark_v0_normal ./data/ShapeNet_pc_2048 --n_point 2048
    

Training

We use train_ae.py to train an autoencoder on ModelNet40 dataset:

python ./train_ae.py './data/ModelNet40_pc_8192/**/train/*.ply' './model/trained_128_16' --N 8192 --ALPHA 2 --K 128 --d 16

Compression and Decompression

We use compress.py and decompress.py to perform compress on point clouds using our trained autoencoder. Take the compression of ModelNet40 as an example:

python ./compress.py './model/trained_128_16' './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' --ALPHA 2
python ./decompress.py './model/trained_128_16' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16'

Evaluation

The Evaluation process uses the same software geo_dist as in Quach's code. We use eval.py to measure reconstruction quality and check the bitrate of the compressed file.

python ./eval.py ../geo_dist/build/pc_error './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16' './eval/ModelNet40_128_16.csv'
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021