Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Overview

The ever-increasing 3D application makes the point cloud compression unprecedentedly important and needed. In this paper, we propose a patch-based compression process using deep learning, focusing on the lossy point cloud geometry compression. Unlike existing point cloud compression networks, which apply feature extraction and reconstruction on the entire point cloud, we divide the point cloud into patches and compress each patch independently. In the decoding process, we finally assemble the decompressed patches into a complete point cloud. In addition, we train our network by a patch-to-patch criterion, i.e., use the local reconstruction loss for optimization, to approximate the global reconstruction optimality. Our method outperforms the state-of-the-art in terms of rate-distortion performance, especially at low bitrates. Moreover, the compression process we proposed can guarantee to generate the same number of points as the input. The network model of this method can be easily applied to other point cloud reconstruction problems, such as upsampling.

Environment

Python 3.9.6 and Pytorch 1.9.0

Other dependencies:

pytorch3d 0.5.0 for KNN and chamfer loss: https://github.com/facebookresearch/pytorch3d

geo_dist for point to plane evaluation: https://github.com/mauriceqch/geo_dist

*For some unexpected reasons, we have rewritten the experimental code using a different environment and dependencies than in the paper. The training parameters and experimental results may be slightly different.

Data Preparation

You need ModelNet40 and ShapeNet to reproduce our results. The following steps will show you a general way to prepare point clouds in our experiment.

ModelNet40

  1. Download the ModelNet40 data: http://modelnet.cs.princeton.edu

  2. Convert CAD models(.off) to point clouds(.ply) by using sample_modelnet.py:

    python ./sample_modelnet.py ./data/ModelNet40 ./data/ModelNet40_pc_8192 --n_point 8192
    

ShapeNet

  1. Download the ShapeNet data here

  2. Sampling point clouds by using sample_shapenet.py:

    python ./sample_shapenet.py ./data/shapenetcore_partanno_segmentation_benchmark_v0_normal ./data/ShapeNet_pc_2048 --n_point 2048
    

Training

We use train_ae.py to train an autoencoder on ModelNet40 dataset:

python ./train_ae.py './data/ModelNet40_pc_8192/**/train/*.ply' './model/trained_128_16' --N 8192 --ALPHA 2 --K 128 --d 16

Compression and Decompression

We use compress.py and decompress.py to perform compress on point clouds using our trained autoencoder. Take the compression of ModelNet40 as an example:

python ./compress.py './model/trained_128_16' './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' --ALPHA 2
python ./decompress.py './model/trained_128_16' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16'

Evaluation

The Evaluation process uses the same software geo_dist as in Quach's code. We use eval.py to measure reconstruction quality and check the bitrate of the compressed file.

python ./eval.py ../geo_dist/build/pc_error './data/ModelNet40_pc_8192/**/test/*.ply' './data/ModelNet40_pc_8192_compressed_128_16' './data/ModelNet40_pc_8192_decompressed_128_16' './eval/ModelNet40_128_16.csv'
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022