GT China coal model

Overview

GT China coal model

The full version of a China coal transport model with a very high spatial reslution.

What it does

The code works in a few steps:

  1. Take easily understandable and readable xlsx input files on networks, plants, demand etc, and create project build files form this (done in R).
  2. Take the build files and create an LP problem file from it (in python, either locally or on AWS Sagemaker).
  3. Solve the problem from the LP problem file, and write solution to a txt file (either in Cplex interactive or in python).
  4. Process the solution txt file and write to easily understandable and readable xlsx (in R). The packages required to run these scripts are included in the environment.yml (for python) and the renv.lock file (for R; this first requires installation of renv package: https://rstudio.github.io/renv/articles/renv.html; after installation run renv:restore()).

The model

The model optimizes for a minimum cost of production + transport + transmission.
Production meaning coal mining costs, transport meaning rail/truck/riverborne/ocean-going transport and handling costs, and transmission meaning inter-provincial transport of electricity via UHV cables.

Constraints in the optimization

The constraints in the mini testbench are the same as in the full model. These are:

  • Mines (or any other node) cannot supply types of coal they do not produce.
  • The flow of coal of each type out of a node cannot exceed flows of coal of each type into a node plus supply by the node (with supply being non-zero only for mines).
  • The energy content of the supply and the flows of coal of each type into a node have to be at least equal to the demand for electricity, plus other thermal coal demand, plus the energy content of flows of coal of each type out of a node. Note that only mines can supply coal, all demand for electrical power occurs in provincial demand nodes, and demand for other thermal coal is placed at city-level nodes.
  • The amount of hard coking coal (HCC) flowing into a node has to at least be equal to the steel demand multiplied by 0.581. Note that all steel demand is placed in provincial level steel demand nodes, which are connecte with uni-directional links from steel plants to steel demand nodes. This means no coal can flow out of a steel demand node and we do not need further forumalae for mass balances. Also note that we presume a mix of coking coal need to produce a ton of steel of 581 kg Hard coking coal (HCC), 176 kg of soft coking coal (SCC), and 179 kg of pulverized coal for injection (PCI).
  • The amount of soft coking coal (SCC) flowing into a node has to at least be equal to the amount of HCC flowing into that node, mulitplied with 0.581/0.176.
  • The amount of pulverized coal for injection (PCI) flowing into a node has to at least be equal to the amount of HCC flowing into that node, mulitplied with 0.581/0.179.
  • The total volume of all coal types transported along a link cannot exceed the transport capacity of that link. Note that this constraint is applied only to those links with a non-infinite transport capacity. In practive this means rail links are assumed to have a transport capacity, ocean routes, rivers, and road links are assumed to have infinite capacity.
  • The total amount of energy transported along a link cannot exceed the transmission capacity of that link. That is, the amount of each coal type multiplied with the energy content of each coal type cannot exceed the electrical transmission capacity of links. This constraint is applied only links between power plant units and provincial electricity demand nodes, as well as UHV transmission links between provincial electricity demand nodes. These are the only links along which electrical energy is transported. All other links transport physcial quantities of coal. This line simultaneously deals with the production capapcity (MW) and conversion efficiency of power plants: the energy transported over a link cannot exceed the volume of each coal type, multiplied with the energy content of each coal type, multiplied with the energy conversion factor of the link. For links between coal fired power plant units and provincial electricity demand nodes, this is equal to the conversion effincy of the power plant unit. For UHV transmission links between two provincial level electricity demand nodes, this is equal to (1- transmission losses) over that UHV line, with transmission losses calculated based on transmission distance and a benchmark loss for UHV-DC or UHV-AC lines.
  • The handling capacity of ports cannot be exceeded. Specifically, the total amount of coal flowing out of a port cannot exceed its handling capacity.
  • The production capacity of steel plants cannot be exceeded. Specifically, the total amount of hard coking coal, soft coking coal, and pulverized coal for injection flowing out of a steel plant node (and towards a provincial steel demand node) cannot exceed the steel plant's production capacity multiplied by 0.581+0.176+0.179, the mix of different coking coals needed to produce steel.

Technical notes

  • All transport costs are pre-calculated for each link, and include a fixed handling costs and a distance based transport cost, based on the type handling (origin and destaination) and type of transport (separate for rail, truck, riverborne, ocean-going. A small number of coal rail lines has specific handling and transport costs).
  • Some of the capacities are already reported in the input sheet for the edges. The physical transport capacity from this sheet is used. For capacities of ports, steel plants, and electrical transmission capacities, the data from the separate port/steel plant/electrical capacities sheets is used.
  • An exmaple lp file is included to make this reporsitory as self-conatined as possible. This lp file is zipped to stay within github file size limits.

Contributions

This project was developed by:

  • Jorrit Gosens: conceptualization, bulk of the data preparation, software implementation and debugging in R & Python;
  • Alex H. Turnbull: conceptualization, some data preparation, proof-reading and debugging of software.

License

MIT License as separately included.
In short, do what you want with this script, but refer to the original authors when you use or develop this code.

License

MIT License as separately included.
In short, do what you want with this script, but refer to the original authors when you use or develop this code.

Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022