GT China coal model

Overview

GT China coal model

The full version of a China coal transport model with a very high spatial reslution.

What it does

The code works in a few steps:

  1. Take easily understandable and readable xlsx input files on networks, plants, demand etc, and create project build files form this (done in R).
  2. Take the build files and create an LP problem file from it (in python, either locally or on AWS Sagemaker).
  3. Solve the problem from the LP problem file, and write solution to a txt file (either in Cplex interactive or in python).
  4. Process the solution txt file and write to easily understandable and readable xlsx (in R). The packages required to run these scripts are included in the environment.yml (for python) and the renv.lock file (for R; this first requires installation of renv package: https://rstudio.github.io/renv/articles/renv.html; after installation run renv:restore()).

The model

The model optimizes for a minimum cost of production + transport + transmission.
Production meaning coal mining costs, transport meaning rail/truck/riverborne/ocean-going transport and handling costs, and transmission meaning inter-provincial transport of electricity via UHV cables.

Constraints in the optimization

The constraints in the mini testbench are the same as in the full model. These are:

  • Mines (or any other node) cannot supply types of coal they do not produce.
  • The flow of coal of each type out of a node cannot exceed flows of coal of each type into a node plus supply by the node (with supply being non-zero only for mines).
  • The energy content of the supply and the flows of coal of each type into a node have to be at least equal to the demand for electricity, plus other thermal coal demand, plus the energy content of flows of coal of each type out of a node. Note that only mines can supply coal, all demand for electrical power occurs in provincial demand nodes, and demand for other thermal coal is placed at city-level nodes.
  • The amount of hard coking coal (HCC) flowing into a node has to at least be equal to the steel demand multiplied by 0.581. Note that all steel demand is placed in provincial level steel demand nodes, which are connecte with uni-directional links from steel plants to steel demand nodes. This means no coal can flow out of a steel demand node and we do not need further forumalae for mass balances. Also note that we presume a mix of coking coal need to produce a ton of steel of 581 kg Hard coking coal (HCC), 176 kg of soft coking coal (SCC), and 179 kg of pulverized coal for injection (PCI).
  • The amount of soft coking coal (SCC) flowing into a node has to at least be equal to the amount of HCC flowing into that node, mulitplied with 0.581/0.176.
  • The amount of pulverized coal for injection (PCI) flowing into a node has to at least be equal to the amount of HCC flowing into that node, mulitplied with 0.581/0.179.
  • The total volume of all coal types transported along a link cannot exceed the transport capacity of that link. Note that this constraint is applied only to those links with a non-infinite transport capacity. In practive this means rail links are assumed to have a transport capacity, ocean routes, rivers, and road links are assumed to have infinite capacity.
  • The total amount of energy transported along a link cannot exceed the transmission capacity of that link. That is, the amount of each coal type multiplied with the energy content of each coal type cannot exceed the electrical transmission capacity of links. This constraint is applied only links between power plant units and provincial electricity demand nodes, as well as UHV transmission links between provincial electricity demand nodes. These are the only links along which electrical energy is transported. All other links transport physcial quantities of coal. This line simultaneously deals with the production capapcity (MW) and conversion efficiency of power plants: the energy transported over a link cannot exceed the volume of each coal type, multiplied with the energy content of each coal type, multiplied with the energy conversion factor of the link. For links between coal fired power plant units and provincial electricity demand nodes, this is equal to the conversion effincy of the power plant unit. For UHV transmission links between two provincial level electricity demand nodes, this is equal to (1- transmission losses) over that UHV line, with transmission losses calculated based on transmission distance and a benchmark loss for UHV-DC or UHV-AC lines.
  • The handling capacity of ports cannot be exceeded. Specifically, the total amount of coal flowing out of a port cannot exceed its handling capacity.
  • The production capacity of steel plants cannot be exceeded. Specifically, the total amount of hard coking coal, soft coking coal, and pulverized coal for injection flowing out of a steel plant node (and towards a provincial steel demand node) cannot exceed the steel plant's production capacity multiplied by 0.581+0.176+0.179, the mix of different coking coals needed to produce steel.

Technical notes

  • All transport costs are pre-calculated for each link, and include a fixed handling costs and a distance based transport cost, based on the type handling (origin and destaination) and type of transport (separate for rail, truck, riverborne, ocean-going. A small number of coal rail lines has specific handling and transport costs).
  • Some of the capacities are already reported in the input sheet for the edges. The physical transport capacity from this sheet is used. For capacities of ports, steel plants, and electrical transmission capacities, the data from the separate port/steel plant/electrical capacities sheets is used.
  • An exmaple lp file is included to make this reporsitory as self-conatined as possible. This lp file is zipped to stay within github file size limits.

Contributions

This project was developed by:

  • Jorrit Gosens: conceptualization, bulk of the data preparation, software implementation and debugging in R & Python;
  • Alex H. Turnbull: conceptualization, some data preparation, proof-reading and debugging of software.

License

MIT License as separately included.
In short, do what you want with this script, but refer to the original authors when you use or develop this code.

License

MIT License as separately included.
In short, do what you want with this script, but refer to the original authors when you use or develop this code.

This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022