Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

Overview

About subwAI

subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification.

For this project, I made use of a supervised machine learning approach. I provided the ground truth data by playing the game and saving images with the corresponding action that was taken during the respective frame (jump, roll, left, right, noop) and in order for the AI to best imitate my playing style I used a convolutional neural network (CNN) with several layers (convolution, average pooling, dense layer, dropout, output), which gave me a good accuracy of 85% for it's predictions. After augmenting the data (mirroring, which resulted in a dataset twice as big) the model seemed to give even more robust results, when letting it play the game. Ultimately the model managed to finish runs of over a minute regularly and it safely handles the usual obstacles seen in the game. Moreover, the AI - with it's unconvential behavior - discovered a game-changing glitch.

More on all this can be seen in my video on YouTube.

thumb4

Description/Usage

This repository contains everything that is needed for building an AI that plays Subway Surfers. With the provided scripts you can...

  • build a dataset by playing the game while running py ai.py gather (takes rapid screenshots of the game and saves images in respective folders ['down', 'left', 'noop', 'right', 'up'] in the folder 'images'); press 'q' or 'esc' to quit
  • train the specified model defined in get_model() on existing dataset running py ai.py train; add load <image_width> to use a preloaded dataset for the respective image_width provided it has been saved before
  • augment the existing dataset by flipping every image and adjust the label (flipped image in 'left' needs to be changed to 'right') by running py dataset_augmentation.py
  • have a look at what your trained model is doing under the hood with py image_check.py to see individual predictions for images and change labels when needed (press 'y' to move on to next image; 'n' to delete image; 'w' to move image to 'up'-folder; 'a' to move image to 'left'-folder; 's' to move image to 'down'-folder; 'd' to move image to 'right'-folder)
  • if order of images is changed run py image_sort.py in order to bring everything in order again
  • AND MOST IMPORTANTLY run py ai.py play to let the trained model play the game; press 'q' or 'esc' to quit; press 'y' to save a screen recording after the run and 'n' to not save it; add auto as a command line argument to have the program automatically save recordings of runs longer than 40 seconds

Also...

  • in the folder 'recordings' you can view the saved screen captures and see the predictions for each individual frame as well as the frame rate
  • in the folder 'models' your trained models are saved; while the Sequential() model (convolutional neural network with layers defined in get_model()) gives the best results you can also try other more simplistic machine learning models such as [KNeighborsClassifier(n_neighbors=5), GaussianNB(), Perceptron()]
  • visualizations of the CNN-architecture and details regarding layer configurations as well as the accuracy and loss of the model is saved in models\Sequential

ezgif com-gif-maker

Owner
sports engineer, self-taught programmer, interested in game dev and machine learning
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022