Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Overview

Discovering Non-monotonic Autoregressive Orderings with Variational Inference

Description

This package contains the source code implementation of the paper "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper).

Inferring good generation orders in natural sequences is challenging. In our main contribution, we propose Variational Order Inference (VOI), which can be efficiently trained to discover autoregressive sequence generation orders in a data driven way without a domain-specific prior.

In VOI, the encoder permutation generator generates non-monotonic autoregressive orders as the latent variable, and the decoder autoregressive (language) model maximizes the joint probability of generating the target sequence under these non-monotonic orders. In conditional text generation tasks, the encoder is implemented as Transformer with non-causal attention, and the decoder is implemented as Transformer-InDIGO (Gu et al., 2019) which generates target sequences through insertion.

Installation

To install this package, first download the package from github, then install it using pip. For CUDA 10.1 (as configured in setup.py), the package versions are Tensorflow 2.3 and PyTorch 1.5, with their corresponding tensorflow_probability and torchvision versions. For CUDA 11.0, you may need to change the package versions in setup.py to be tensorflow==2.4, torch==1.6, tensorflow_probability==0.12.1, and torchvision==0.7.0.

git clone https://github.com/xuanlinli17/autoregressive_inference
cd autoregressive_inference
pip install -e .

Install helper packages for word tokenization and part of speech tagging. Enter the following statements into the python interpreter where you have installed our package.

import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('universal_tagset')

Install nlg-eval that contains several helpful metrics for evaluating image captioning. Tasks other than captioning are evaluated through the vizseq package we already installed through setup.py.

pip install git+https://github.com/Maluuba/[email protected]
nlg-eval --setup

Clone wmt16-scripts for machine translation preprocessing.

git clone https://github.com/rsennrich/wmt16-scripts

Configure tensorflow-hungarian

During training, one process of order inference is to obtain permutation matrices from doubly stochastic matrices. This is accomplished through the Hungarian algorithm. Since tf.py_function only allows one gpu to run the function at any time, multi-gpu training is very slow if we use scipy.optimize.linear_sum_assignment (which requires wrapping it with tf.py_function to call). Therefore, we use a pre-written Hungarian-op script and compile it through g++ into dynamic library. During runtime, we can import the dynamic library using tensorflow api. This leads to much faster distributed training.

git clone https://github.com/brandontrabucco/tensorflow-hungarian
cd tensorflow-hungarian
make hungarian_op

If you encounter fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory, this could be resolved via link. The generated op could be found in tensorflow-hungarian/tensorflow_hungarian/python/ops/_hungarian_ops.so

Alternatively, we could also generate the op from the repo munkres-tensorflow.

git clone https://github.com/mbaradad/munkres-tensorflow
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
g++ -std=c++11 -shared munkres-tensorflow/hungarian.cc -o hungarian.so -fPIC ${TF_CFLAGS[@]} ${TF_LFLAGS[@]} -O2

However, this function requires all entries in a matrix to be different (otherwise some strange behaviors will occur), so we also need to uncomment the line sample_permu = sample_permu * 1000 + tf.random.normal(tf.shape(sample_permu)) * 1e-7 in voi/nn/layers/permutation_sinkhorn.py

Setup

Captioning

In this section, we will walk you through how to create a training dataset, using COCO 2017 as an example. In the first step, download COCO 2017 here. Place the extracted .json annotations at ~/annotations and the images at ~/train2017 and ~/val2017 for the training and validation set respectively.

Create a part of speech tagger first. This information is used to visualize the generation orders of captions learnt by our model, and is not used during training.

cd {this_repo}
python scripts/data/create_tagger.py --out_tagger_file tagger.pkl

Extract COCO 2017 into a format compatible with our package. There are several arguments that you can specify to control how the dataset is processed. You may leave all arguments as default except out_caption_folder and annotations_file.

python scripts/data/extract_coco.py --out_caption_folder ~/captions_train2017 --annotations_file ~/annotations/captions_train2017.json
python scripts/data/extract_coco.py --out_caption_folder ~/captions_val2017 --annotations_file ~/annotations/captions_val2017.json

Process the COCO 2017 captions and extract integer features on which to train a non sequential model. There are again several arguments that you can specify to control how the captions are processed. You may leave all arguments as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset in the previous step. Note that if vocab_file doesn't exist before, it will be automatically generated. Since we have provided the train2017_vocab.txt we used to train our model, this vocab file will be directly loaded to create integer representations of tokens.

python scripts/data/process_captions.py --out_feature_folder ~/captions_train2017_features --in_folder ~/captions_train2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --min_word_frequency 5 --max_length 100
python scripts/data/process_captions.py --out_feature_folder ~/captions_val2017_features --in_folder ~/captions_val2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --max_length 100

Process images from the COCO 2017 dataset and extract features using a pretrained Faster RCNN FPN backbone from pytorch checkpoint. Note this script will distribute inference across all visible GPUs on your system. There are several arguments you can specify, which you may leave as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset.

python scripts/data/process_images.py --out_feature_folder ~/train2017_features --in_folder ~/train2017 --batch_size 4
python scripts/data/process_images.py --out_feature_folder ~/val2017_features --in_folder ~/val2017 --batch_size 4

Finally, convert the processed features into a TFRecord format for efficient training. Record where you have extracted the COCO dataset in the previous steps and specify out_tfrecord_folder, caption_folder and image_folder at the minimum.

python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/train2017_tfrecords \
--caption_folder ~/captions_train2017_features --image_folder ~/train2017_features --samples_per_shard 4096
python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/val2017_tfrecords \
--caption_folder ~/captions_val2017_features --image_folder ~/val2017_features --samples_per_shard 4096

Django

For convenience, we ran the script from NL2code to extract the cleaned dataset from drive and place them in django_data. The vocab file djangovocab.txt is also in that directory. Alternatively, you may download raw data from ase15-django and run python scripts/data/extract_django.py --data_dir {path to all.anno and all.code)

Next, process the Django dataset into TFRecord format for efficient training.

cd {this_repo}

CUDA_VISIBLE_DEVICES=0 python scripts/data/process_django.py --data_folder ./django_data \
--vocab_file ./django_data/djangovocab.txt --dataset_type train/dev/test \
--out_feature_folder ./django_data

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_django.py --out_tfrecord_folder ./django_data \
--dataset_type train/dev/test --feature_folder ./django_data

Gigaword

First, extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_gigaword.py --data_dir {dataroot}
cd {dataroot}/gigaword
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Then, generate the vocab file, and use this vocab file to convert tokens into integers and store in a feature file. Alternately you may use the gigaword_vocab.txt provided in our repo, which we used to train our model. To do this, set the following --vocab_file argument to be {this_repo}/gigaword_vocab.txt.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_gigaword.py --out_feature_folder {dataroot}/gigaword \
--data_folder {dataroot}/gigaword --vocab_file {dataroot}/gigaword/gigaword_vocab.txt (or {this_repo}/gigaword_vocab.txt) \
--dataset_type train/validation/test

Finally, generate the train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_gigaword.py --out_tfrecord_folder {dataroot}/gigaword \
--feature_folder {dataroot}/gigaword --samples_per_shard 4096 --dataset_type train/validation/test

WMT

Here, we use WMT16 Ro-En as an example.

First extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot}
cd {dataroot}/wmt16_translate/ro-en
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Extract corpus with truecase to train the truecaser, which is used for evaluation.

git clone https://github.com/moses-smt/mosesdecoder
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot} --truecase
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/src_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.ro
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/tgt_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.en

Remove the diacritics of Romanian:

git clone https://github.com/rsennrich/wmt16-scripts
cd {dataroot}/wmt16_translate/ro-en/
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_train.BPE.txt > src_train.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_validation.BPE.txt > src_validation.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_test.BPE.txt > src_test.BPE.txt

------------Note-------------

In practice, training with the sequence-level distillation dataset (Link) generated using the L2R model with beam size 5 leads to about 2 BLEU improvement on WMT16 Ro-En, intuitively because the target sequences in this new dataset are more consistent. We release the this distilled dataset here. To use this dataset, put src_distillation.BPE.txt and tgt_distillation.BPE.txt in {dataroot}/wmt16_translate/ro-en/. Training on this distilled dataset obtains very similar ordering observations (i.e. the model generates all descriptive tokens before generating the auxillary tokens) compared to training on the original dataset.

-----------------------------

Generate the vocab file (joint vocab for the source and target languages), and use this vocab file to convert tokens into integers and store in a feature file. Since we forgot to remove the diacritics during our initial experiments and we appended all missing vocabs in the diacritics-removed corpus afterwards, the vocab file we used to train our model is slightly different from the one generated through the scripts below, so we have uploaded the vocab file we used to train our model as ro_en_vocab.txt. To use this vocab file, set the following --vocab_file argument to be {this_repo}/ro_en_vocab.txt

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_wmt.py --out_feature_folder {dataroot}/wmt16_translate/ro-en \
--data_folder {dataroot}/wmt16_translate/ro-en --vocab_file {dataroot}/wmt16_translate/ro_en_vocab.txt (or {this_repo}/ro_en_vocab.txt) \
--dataset_type distillation/train/validation/test

Finally, generate the distillation/train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_wmt.py --out_tfrecord_folder {dataroot}/wmt16_translate/ro-en \
--feature_folder {dataroot}/wmt16_translate/ro-en --samples_per_shard 4096 --dataset_type distillation/train/validation/test

Training

Please see training_scripts.md for details about training a model.

Validation, Test, and Visualization

Please see evaluation_visualization_scripts.md for details about validating / testing a model, along with visualizing the generalization orders of a model.

Pretrained Models

We have provided pretrained models for each task here. You may make a directory ckpt_pretrain under this repo and download them under this directory.

To evaluate the pretrained models and visualize their generalization orders, please see eval_visualize_pretrained_models.md for details.

Citations

@inproceedings{li2021autoregressiveinference,
  title={Discovering Non-monotonic Autoregressive Orderings with Variational Inference},
  author={Li, Xuanlin and Trabucco, Brandon and Park, Dong Huk and Luo, Michael and Shen, Sheng and Darrell, Trevor and Gao, Yang},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=jP1vTH3inC}
}
Owner
Xuanlin (Simon) Li
Researcher in Artificial Intelligence and Machine Learning | PhD student @haosulab at UCSD | Alumni of Berkeley AI
Xuanlin (Simon) Li
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022