Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

Overview

DeltaConv

[Paper] [Project page]

Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt.

Anisotropic convolution is a central building block of CNNs but challenging to transfer to surfaces. DeltaConv learns combinations and compositions of operators from vector calculus, which are a natural fit for curved surfaces. The result is a simple and robust anisotropic convolution operator for point clouds with state-of-the-art results.

Top: unlike images, surfaces have no global coordinate system. Bottom: DeltaConv learns both scalar and vector features using geometric operators.

Contents

Installation

  1. Clone this repository:
git clone https://github.com/rubenwiersma/deltaconv.git
  1. Create a conda environment from the environment.yml:
conda env create -n deltaconv -f environment.yml

Done!

Manual installation

If you wish to install DeltaConv in your own environment, proceed as follows.

  1. Make sure that you have installed:

  2. Install DeltaConv:

pip install deltaconv

Building DeltaConv for yourself

  1. Make sure you clone the repository with submodules:
git clone --recurse-submodules https://github.com/rubenwiersma/deltaconv.git

If you have already cloned the repository without submodules, you can fix it with git submodule update --init --recursive.

  1. Install from folder:
cd [root_folder]
pip install

Replicating the experiments

See the README.md in replication_scripts for instructions on replicating the experiments and using the pre-trained weights (available in experiments/pretrained_weights).

In short, you can run bash scripts to replicate our experiments. For example, evaluating pre-trained weights on ShapeNet:

cd [root_folder]
conda activate deltaconv
bash replication_scripts/pretrained/shapenet.sh

You can also directly run the python files in experiments:

python experiments/train_shapenet.py

Use the -h or --help flag to find out which arguments can be passed to the training script:

python experiments/train_shapenet.py -h

You can keep track of the training process with tensorboard:

tensorboard logdir=experiments/runs/shapenet_all

Anisotropic Diffusion

The code that was used to generate Figure 2 from the paper and Figure 2 and 3 from the supplement is a notebook in the folder experiments/anisotropic_diffusion.

Data

The training scripts assume that you have a data folder in experiments. ModelNet40 and ShapeNet download the datasets from a public repository. Instructions to download the data for human body shape segmentation, SHREC, and ScanObjectNN are given in the training scripts.

Tests

In the paper, we make statements about a number of properties of DeltaConv that are either a result of prior work or due to the implementation. We created a test suite to ensure that these properties hold for the implementation, along with unit tests for each module. For example:

  • Section 3.6, 3.7: Vector MLPs are equivariant to norm-preserving transformations, or coordinate-independent (rotations, reflections)
    • test/nn/test_mlp.py
    • test/nn/test_nonlin.py
  • Section 3.7: DeltaConv is coordinate-independent, a forward pass on a shape with one choice of bases leads to the same output and weight updates when run with different bases
    • test/nn/test_deltaconv.py
  • Introduction, section 3.2: The operators are robust to noise and outliers.
    • test/geometry/test_grad_div.py
  • Supplement, section 1: Vectors can be mapped between points with equation (15).
    • test/geometry/test_grad_div.py

Citations

Please cite our paper if this code contributes to an academic publication:

@Article{Wiersma2022DeltaConv,
  author    = {Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt},
  journal   = {Transactions on Graphics},
  title     = {DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds},
  year      = {2022},
  month     = jul,
  number    = {4},
  volume    = {41},
  doi       = {10.1145/3528223.3530166},
  publisher = {ACM},
}

The farthest point sampling code relies on Geometry Central:

@misc{geometrycentral,
  title = {geometry-central},
  author = {Nicholas Sharp and Keenan Crane and others},
  note = {www.geometry-central.net},
  year = {2019}
}

And we make use of PyG (and underlying packages) to load point clouds, compute sparse matrix products, and compute nearest neighbors:

@inproceedings{Fey/Lenssen/2019,
  title={Fast Graph Representation Learning with {PyTorch Geometric}},
  author={Fey, Matthias and Lenssen, Jan E.},
  booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
  year={2019},
}
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022