This repository contains the source code for the paper First Order Motion Model for Image Animation

Overview

!!! Check out our new paper and framework improved for articulated objects

First Order Motion Model for Image Animation

This repository contains the source code for the paper First Order Motion Model for Image Animation by Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci and Nicu Sebe.

Example animations

The videos on the left show the driving videos. The first row on the right for each dataset shows the source videos. The bottom row contains the animated sequences with motion transferred from the driving video and object taken from the source image. We trained a separate network for each task.

VoxCeleb Dataset

Screenshot

Fashion Dataset

Screenshot

MGIF Dataset

Screenshot

Installation

We support python3. To install the dependencies run:

pip install -r requirements.txt

YAML configs

There are several configuration (config/dataset_name.yaml) files one for each dataset. See config/taichi-256.yaml to get description of each parameter.

Pre-trained checkpoint

Checkpoints can be found under following link: google-drive or yandex-disk.

Animation Demo

To run a demo, download checkpoint and run the following command:

python demo.py  --config config/dataset_name.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint --relative --adapt_scale

The result will be stored in result.mp4.

The driving videos and source images should be cropped before it can be used in our method. To obtain some semi-automatic crop suggestions you can use python crop-video.py --inp some_youtube_video.mp4. It will generate commands for crops using ffmpeg. In order to use the script, face-alligment library is needed:

git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install

Animation demo with Docker

If you are having trouble getting the demo to work because of library compatibility issues, and you're running Linux, you might try running it inside a Docker container, which would give you better control over the execution environment.

Requirements: Docker 19.03+ and nvidia-docker installed and able to successfully run the nvidia-docker usage tests.

We'll first build the container.

docker build -t first-order-model .

And now that we have the container available locally, we can use it to run the demo.

docker run -it --rm --gpus all \
       -v $HOME/first-order-model:/app first-order-model \
       python3 demo.py --config config/vox-256.yaml \
           --driving_video driving.mp4 \
           --source_image source.png  \ 
           --checkpoint vox-cpk.pth.tar \ 
           --result_video result.mp4 \
           --relative --adapt_scale

Colab Demo

@graphemecluster prepared a gui-demo for the google-colab see: demo.ipynb. To run press Open In Colab button.

For old demo, see old-demo.ipynb.

Face-swap

It is possible to modify the method to perform face-swap using supervised segmentation masks. Screenshot For both unsupervised and supervised video editing, such as face-swap, please refer to Motion Co-Segmentation.

Training

To train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3

The code will create a folder in the log directory (each run will create a time-stamped new directory). Checkpoints will be saved to this folder. To check the loss values during training see log.txt. You can also check training data reconstructions in the train-vis subfolder. By default the batch size is tunned to run on 2 or 4 Titan-X gpu (appart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

Evaluation on video reconstruction

To evaluate the reconstruction performance run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint

You will need to specify the path to the checkpoint, the reconstruction subfolder will be created in the checkpoint folder. The generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. Instructions for computing metrics from the paper can be found: https://github.com/AliaksandrSiarohin/pose-evaluation.

Image animation

In order to animate videos run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint

You will need to specify the path to the checkpoint, the animation subfolder will be created in the same folder as the checkpoint. You can find the generated video there and its loss-less version in the png subfolder. By default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. The path to this file should be specified in corresponding .yaml file in pairs_list setting.

There are 2 different ways of performing animation: by using absolute keypoint locations or by using relative keypoint locations.

  1. Animation using absolute coordinates: the animation is performed using the absolute postions of the driving video and appearance of the source image. In this way there are no specific requirements for the driving video and source appearance that is used. However this usually leads to poor performance since unrelevant details such as shape is transfered. Check animate parameters in taichi-256.yaml to enable this mode.

  1. Animation using relative coordinates: from the driving video we first estimate the relative movement of each keypoint, then we add this movement to the absolute position of keypoints in the source image. This keypoint along with source image is used for animation. This usually leads to better performance, however this requires that the object in the first frame of the video and in the source image have the same pose

Datasets

  1. Bair. This dataset can be directly downloaded.

  2. Mgif. This dataset can be directly downloaded.

  3. Fashion. Follow the instruction on dataset downloading from.

  4. Taichi. Follow the instructions in data/taichi-loading or instructions from https://github.com/AliaksandrSiarohin/video-preprocessing.

  5. Nemo. Please follow the instructions on how to download the dataset. Then the dataset should be preprocessed using scripts from https://github.com/AliaksandrSiarohin/video-preprocessing.

  6. VoxCeleb. Please follow the instruction from https://github.com/AliaksandrSiarohin/video-preprocessing.

Training on your own dataset

  1. Resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. We recommend the later, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.

  2. Create a folder data/dataset_name with 2 subfolders train and test, put training videos in the train and testing in the test.

  3. Create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. Also adjust the number of epoch in train_params.

Additional notes

Citation:

@InProceedings{Siarohin_2019_NeurIPS,
  author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
  title={First Order Motion Model for Image Animation},
  booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
  month = {December},
  year = {2019}
}
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022