基于Paddle框架的fcanet复现

Overview

fcanet-Paddle

基于Paddle框架的fcanet复现

fcanet

本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

参考项目:

frazerlin-fcanet

数据准备

本项目已挂载论文所使用的数据集,对于tgztar文件需要利用以下命令解压

tar -xvf benchmark.tgz
tar xvf VOCtrainval_11-May-2012.tar

整个工程具有以下目录结构

/home/aistudio
|───Data(数据集)
└───────benchmark_RELEASE
└───────VOCdevkit
└───────GrabCut
└───────Berkeley
└───fcanet(代码文件)
└───InitialPaddleModel(初始化权重)

训练

The official PyTorch implementation of CVPR 2020 paper "Interactive Image Segmentation with First Click Attention". 并未提供训练代码。通过邮件联系作者,作者由于企业合作项目原因,合作结束后会将会提供训练代码

测试

模型下载

提取码:2ira

AIStudio链接

验证集测试

python fcanet/evaluate.py --backbone [resnet/res2net] --dataset [GrabCut,Berkeley,DAVIS(not exists in this repo),VOCdevkit] (--sis)

如下图所示,默认的backbone均为101

resnet101测试示例

res2net101测试示例

backbone dataset mNoC mIoU-NoC
resnet101 Berkeley 4.23 [0. 0.728 0.854 0.885 0.912 0.915 0.926 0.935 0.939 0.935 0.94 0.943 0.942 0.944 0.945 0.945 0.947 0.947 0.948 0.947 0.949]
resnet101 GrabCut 2.24 [0. 0.78 0.87 0.923 0.944 0.95 0.956 0.966 0.964 0.971 0.971 0.971 0.975 0.977 0.978 0.979 0.978 0.978 0.979 0.979 0.979]
resnet101 VOC2012 2.9810329734461627 [0. 0.715 0.838 0.885 0.909 0.926 0.937 0.945 0.951 0.957 0.962 0.964 0.967 0.969 0.971 0.973 0.974 0.976 0.977 0.978 0.979]
res2net101 Berkeley 3.98 [0. 0.788 0.872 0.901 0.921 0.93 0.933 0.938 0.938 0.943 0.943 0.943 0.943 0.945 0.947 0.948 0.949 0.949 0.95 0.951 0.95 ]
res2net101 GrabCut 2.16 [0. 0.819 0.877 0.927 0.916 0.931 0.948 0.96 0.966 0.967 0.969 0.971 0.973 0.976 0.977 0.976 0.978 0.977 0.98 0.977 0.979]
res2net101 VOC2012 2.793988911584476 [0. 0.757 0.841 0.882 0.908 0.925 0.937 0.945 0.952 0.958 0.963 0.966 0.968 0.971 0.973 0.974 0.976 0.977 0.978 0.98 0.98 ]

可视化测试

利用annotator.py可以实现可视化操作,感兴趣的读者可是利用Qt实现UI程序,实现效果如下所示

需要注意的是,AIStudio环境暂不支持这种可视化方式,你需要将此仓库部署到本地运行,你可能需要修改代码文件中的路径

python fcanet/annotator.py --backbone res2net --input fcanet/test.jpg --output test_mask.jpg

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022