A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

Overview

c is for Camera

A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

The purpose of this project is to explore and understand the logic in the mechanisms of a camera by using object-oriented programming to represent real-world objects. It's also a way to appreciate the intricate mechanical logic embodied in a device like a camera.

'Canonet G-III QL17'

It aims towards completeness in its modelling of the real world. For example, if you open the back of the camera in daylight with a partially exposed film, it will ruin the film.

See the c is for Camera documentation.

A quick tour

Clone the repository:

git clone https://github.com/evildmp/C-is-for-Camera.git

or:

git clone [email protected]:evildmp/C-is-for-Camera.git

In the C-is-for-Camera directory, start a Python 3 shell.

>>> from camera import Camera
>>> c = Camera()

See the camera's state:

>>> c.state()
================== Camera state =================

------------------ Controls ---------------------
Selected speed:            1/120

------------------ Mechanical -------------------
Back closed:               True
Lens cap on:               False
Film advance mechanism:    False
Frame counter:             0
Shutter cocked:            False
Shutter timer:             1/128 seconds
Iris aperture:             ƒ/16
Camera exposure settings:  15.0 EV

------------------ Metering ---------------------
Light meter reading:        4096 cd/m^2
Exposure target:            15.0 EV
Mode:                       Shutter priority
Battery:                    1.44 V
Film speed:                 100 ISO

------------------ Film -------------------------
Speed:                      100 ISO
Rewound into cartridge:     False
Exposed frames:             0 (of 24)
Ruined:                     False

------------------ Environment ------------------
Scene luminosity:           4096 cd/m^2

Advance the film:

>>> c.film_advance_mechanism.advance()
On frame 0 (of 24)
Advancing film
On frame 1 (of 24)
Cocking shutter
Cocked

Release the shutter:

>>> c.shutter.trip()
Shutter openening for 1/128 seconds
Shutter closes
Shutter uncocked
'Tripped'

It's not possible to advance the mechanism twice without releasing the shutter:

>>> c.film_advance_mechanism.advance()
On frame 1 (of 24)
Advancing film
On frame 2 (of 24)
Cocking shutter
Cocked
>>> c.film_advance_mechanism.advance()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/daniele/Repositories/camera/camera.py", line 56, in advance
    raise self.AlreadyAdvanced
camera.AlreadyAdvanced

If you open the back in daylight it ruins the film:

>>> c.back.open()
Opening back
Resetting frame counter to 0
'Film is ruined'

Close the back and rewind the film:

>>> c.back.close()
Closing back
>>> c.film_rewind_mechanism.rewind()
Rewinding film
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022