Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Overview

Pixel Transposed Convolutional Networks

Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University.

Introduction

Pixel transposed convolutional layer (PixelTCL) is a more effective way to perform up-sampling operations than transposed convolutional layer.

Detailed information about PixelTCL is provided in [arXiv tech report] (https://arxiv.org/abs/1705.06820).

Citation

If using this code, please cite our paper.

@article{gao2017pixel,
  title={Pixel Transposed Convolutional Networks},
  author={Hongyang Gao and Hao Yuan and Zhengyang Wang and Shuiwang Ji},
  journal={arXiv preprint arXiv:1705.06820},
  year={2017}
}

Results

Semantic segmentation

model

Comparison of semantic segmentation results. The first and second rows are images and ground true labels, respectively. The third and fourth rows are the results of using regular transposed convolution and our proposed pixel transposed convolution, respectively.

Generate real images (VAE)

model

Sample face images generated by VAEs when trained on the CelebA dataset. The first two rows are images generated by a standard VAE with transposed convolutional layers for up-sampling. The last two rows are images generated by the same VAE model, but using PixelTCL for up-sampling in the generator network.

System requirement

Programming language

Python 3.5+

Python Packages

tensorflow (CPU) or tensorflow-gpu (GPU), numpy, h5py, progressbar, PIL, scipy

Prepare data

In this project, we provided a set of sample datasets for training, validation, and testing. If want to train on other data such as PASCAL, prepare the h5 files as required. utils/h5_utils.py could be used to generate h5 files.

Configure the network

All network hyperparameters are configured in main.py.

Training

max_step: how many iterations or steps to train

test_step: how many steps to perform a mini test or validation

save_step: how many steps to save the model

summary_step: how many steps to save the summary

Data

data_dir: data directory

train_data: h5 file for training

valid_data: h5 file for validation

test_data: h5 file for testing

batch: batch size

channel: input image channel number

height, width: height and width of input image

Debug

logdir: where to store log

modeldir: where to store saved models

sampledir: where to store predicted samples, please add a / at the end for convinience

model_name: the name prefix of saved models

reload_step: where to return training

test_step: which step to test or predict

random_seed: random seed for tensorflow

Network architecture

network_depth: how deep of the U-Net including the bottom layer

class_num: how many classes. Usually number of classes plus one for background

start_channel_num: the number of channel for the first conv layer

conv_name: use which convolutional layer in decoder. We have conv2d for standard convolutional layer, and ipixel_cl for input pixel convolutional layer proposed in our paper.

deconv_name: use which upsampling layer in decoder. We have deconv for standard transposed convolutional layer, ipixel_dcl for input pixel transposed convolutional layer, and pixel_dcl for pixel transposed convolutional layer proposed in our paper.

Training and Testing

Start training

After configure the network, we can start to train. Run

python main.py

The training of a U-Net for semantic segmentation will start.

Training process visualization

We employ tensorboard to visualize the training process.

tensorboard --logdir=logdir/

The segmentation results including training and validation accuracies, and the prediction outputs are all available in tensorboard.

Testing and prediction

Select a good point to test your model based on validation or other measures.

Fill the test_step in main.py with the checkpoint you want to test, run

python main.py --action=test

The final output include accuracy and mean_iou.

If you want to make some predictions, run

python main.py --action=predict

The predicted segmentation results will be in sampledir set in main.py, colored.

Use PixelDCL in other models

If you want to use pixel transposed convolutional layer in other models, just copy the file

utils/pixel_dcn.py

and use it in your model:


from pixel_dcn import pixel_dcl, ipixel_dcl, ipixel_cl


outputs = pixel_dcl(inputs, out_num, kernel_size, scope)

Currently, this version only support up-sampling by factor 2 such as from 2x2 to 4x4. We may provide more flexible version in the future.

Owner
Hongyang Gao
I am currently an Assistant Professor of Iowa State University. My research interest is deep learning.
Hongyang Gao
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022