Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Overview

Pixel Transposed Convolutional Networks

Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University.

Introduction

Pixel transposed convolutional layer (PixelTCL) is a more effective way to perform up-sampling operations than transposed convolutional layer.

Detailed information about PixelTCL is provided in [arXiv tech report] (https://arxiv.org/abs/1705.06820).

Citation

If using this code, please cite our paper.

@article{gao2017pixel,
  title={Pixel Transposed Convolutional Networks},
  author={Hongyang Gao and Hao Yuan and Zhengyang Wang and Shuiwang Ji},
  journal={arXiv preprint arXiv:1705.06820},
  year={2017}
}

Results

Semantic segmentation

model

Comparison of semantic segmentation results. The first and second rows are images and ground true labels, respectively. The third and fourth rows are the results of using regular transposed convolution and our proposed pixel transposed convolution, respectively.

Generate real images (VAE)

model

Sample face images generated by VAEs when trained on the CelebA dataset. The first two rows are images generated by a standard VAE with transposed convolutional layers for up-sampling. The last two rows are images generated by the same VAE model, but using PixelTCL for up-sampling in the generator network.

System requirement

Programming language

Python 3.5+

Python Packages

tensorflow (CPU) or tensorflow-gpu (GPU), numpy, h5py, progressbar, PIL, scipy

Prepare data

In this project, we provided a set of sample datasets for training, validation, and testing. If want to train on other data such as PASCAL, prepare the h5 files as required. utils/h5_utils.py could be used to generate h5 files.

Configure the network

All network hyperparameters are configured in main.py.

Training

max_step: how many iterations or steps to train

test_step: how many steps to perform a mini test or validation

save_step: how many steps to save the model

summary_step: how many steps to save the summary

Data

data_dir: data directory

train_data: h5 file for training

valid_data: h5 file for validation

test_data: h5 file for testing

batch: batch size

channel: input image channel number

height, width: height and width of input image

Debug

logdir: where to store log

modeldir: where to store saved models

sampledir: where to store predicted samples, please add a / at the end for convinience

model_name: the name prefix of saved models

reload_step: where to return training

test_step: which step to test or predict

random_seed: random seed for tensorflow

Network architecture

network_depth: how deep of the U-Net including the bottom layer

class_num: how many classes. Usually number of classes plus one for background

start_channel_num: the number of channel for the first conv layer

conv_name: use which convolutional layer in decoder. We have conv2d for standard convolutional layer, and ipixel_cl for input pixel convolutional layer proposed in our paper.

deconv_name: use which upsampling layer in decoder. We have deconv for standard transposed convolutional layer, ipixel_dcl for input pixel transposed convolutional layer, and pixel_dcl for pixel transposed convolutional layer proposed in our paper.

Training and Testing

Start training

After configure the network, we can start to train. Run

python main.py

The training of a U-Net for semantic segmentation will start.

Training process visualization

We employ tensorboard to visualize the training process.

tensorboard --logdir=logdir/

The segmentation results including training and validation accuracies, and the prediction outputs are all available in tensorboard.

Testing and prediction

Select a good point to test your model based on validation or other measures.

Fill the test_step in main.py with the checkpoint you want to test, run

python main.py --action=test

The final output include accuracy and mean_iou.

If you want to make some predictions, run

python main.py --action=predict

The predicted segmentation results will be in sampledir set in main.py, colored.

Use PixelDCL in other models

If you want to use pixel transposed convolutional layer in other models, just copy the file

utils/pixel_dcn.py

and use it in your model:


from pixel_dcn import pixel_dcl, ipixel_dcl, ipixel_cl


outputs = pixel_dcl(inputs, out_num, kernel_size, scope)

Currently, this version only support up-sampling by factor 2 such as from 2x2 to 4x4. We may provide more flexible version in the future.

Owner
Hongyang Gao
I am currently an Assistant Professor of Iowa State University. My research interest is deep learning.
Hongyang Gao
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022