The code release of paper Low-Light Image Enhancement with Normalizing Flow

Related tags

Deep LearningLLFlow
Overview

PWC

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow

Paper | Project Page

Low-Light Image Enhancement with Normalizing Flow
Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-pui Chau, Alex C. Kot
In AAAI'2022

Overall

Framework

Quantitative results

Evaluation on LOL

The evauluation results on LOL are as follows

Method PSNR SSIM LPIPS
LIME 16.76 0.56 0.35
RetinexNet 16.77 0.56 0.47
DRBN 20.13 0.83 0.16
Kind 20.87 0.80 0.17
KinD++ 21.30 0.82 0.16
LLFlow (Ours) 25.19 0.93 0.11

Computational Cost

Computational Cost The computational cost and performance of models are in the above table. We evaluate the cost using one image with a size 400×600. Ours(large) is the standard model reported in supplementary and Ours(small) is a model with reduced parameters. Both the training config files and pre-trained models are provided.

Visual Results

Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset.

Get Started

Dependencies and Installation

  • Python 3.8
  • Pytorch 1.9
  1. Clone Repo
git clone https://github.com/wyf0912/LLFlow.git
  1. Create Conda Environment
conda create --name LLFlow python=3.8
conda activate LLFlow
  1. Install Dependencies
cd LLFlow
pip install -r requirements.txt

Pretrained Model

We provide the pre-trained models with the following settings:

  • A light weight model with promising performance trained on LOL [Google drive] with training config file ./confs/LOL_smallNet.yml
  • A standard-sized model trained on LOL [Google drive] with training config file ./confs/LOL-pc.yml.
  • A standard-sized model trained on VE-LOL [Google drive] with training config file ./confs/LOLv2-pc.yml.

Test

You can check the training log to obtain the performance of the model. You can also directly test the performance of the pre-trained model as follows

  1. Modify the paths to dataset and pre-trained mode. You need to modify the following path in the config files in ./confs
#### Test Settings
dataroot_GT # only needed for testing with paired data
dataroot_LR
model_path
  1. Test the model

To test the model with paired data and obtain the evaluation results, e.g., PSNR, SSIM, and LPIPS.

python test.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

To test the model with unpaired data

python test_unpaired.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

You can check the output in ../results.

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments.

  1. Modify the paths to dataset in the config yaml files. We provide the following training configs for both LOL and VE-LOL benchmarks. You can also create your own configs for your own dataset.
.\confs\LOL_smallNet.yml
.\confs\LOL-pc.yml
.\confs\LOLv2-pc.yml

You need to modify the following terms

datasets.train.root
datasets.val.root
gpu_ids: [0] # Our model can be trained using a single GPU with memory>20GB. You can also train the model using multiple GPUs by adding more GPU ids in it.
  1. Train the network.
python train.py --opt your_config_path

Citation

If you find our work useful for your research, please cite our paper

@article{wang2021low,
  title={Low-Light Image Enhancement with Normalizing Flow},
  author={Wang, Yufei and Wan, Renjie and Yang, Wenhan and Li, Haoliang and Chau, Lap-Pui and Kot, Alex C},
  journal={arXiv preprint arXiv:2109.05923},
  year={2021}
}

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yufei Wang
PhD student @ Nanyang Technological University
Yufei Wang
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022