PyTorch implementation for ComboGAN

Overview

ComboGAN

This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN)

[ComboGAN Paper]

If you use this code for your research, please cite:

ComboGAN: Unrestrained Scalability for Image Domain Translation Asha Anoosheh, Eirikur Augustsson, Radu Timofte, Luc van Gool In Arxiv, 2017.





Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
  • Clone this repo:
git clone https://github.com/AAnoosheh/ComboGAN.git
cd ComboGAN

ComboGAN training

Our ready datasets can be downloaded using ./datasets/download_dataset.sh .

A pretrained model for the 14-painters dataset can be found HERE. Place under ./checkpoints/ and test using the instructions below, with args --name paint14_pretrained --dataroot ./datasets/painters_14 --n_domains 14 --which_epoch 1150.

Example running scripts can be found in the scripts directory.

  • Train a model:
python train.py --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --niter 
      
        --niter_decay 
        
       
      
     
    
   

Checkpoints will be saved by default to ./checkpoints/ /

  • Fine-tuning/Resume training:
python train.py --continue_train --which_epoch 
   
     --name 
    
      --dataroot ./datasets/
     
       --n_domains 
      
        --niter 
       
         --niter_decay 
         
        
       
      
     
    
   
  • Test the model:
python test.py --phase test --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --which_epoch 
      
        --serial_test

      
     
    
   

The test results will be saved to a html file here: ./results/ / /index.html .

Training/Testing Details

  • Flags: see options/train_options.py for training-specific flags; see options/test_options.py for test-specific flags; and see options/base_options.py for all common flags.
  • Dataset format: The desired data directory (provided by --dataroot) should contain subfolders of the form train*/ and test*/, and they are loaded in alphabetical order. (Note that a folder named train10 would be loaded before train2, and thus all checkpoints and results would be ordered accordingly.)
  • CPU/GPU (default --gpu_ids 0): set--gpu_ids -1 to use CPU mode; set --gpu_ids 0,1,2 for multi-GPU mode. You need a large batch size (e.g. --batchSize 32) to benefit from multiple GPUs.
  • Visualization: during training, the current results and loss plots can be viewed using two methods. First, if you set --display_id > 0, the results and loss plot will appear on a local graphics web server launched by visdom. To do this, you should have visdom installed and a server running by the command python -m visdom.server. The default server URL is http://localhost:8097. display_id corresponds to the window ID that is displayed on the visdom server. The visdom display functionality is turned on by default. To avoid the extra overhead of communicating with visdom set --display_id 0. Secondly, the intermediate results are also saved to ./checkpoints/ /web/index.html . To avoid this, set the --no_html flag.
  • Preprocessing: images can be resized and cropped in different ways using --resize_or_crop option. The default option 'resize_and_crop' resizes the image to be of size (opt.loadSize, opt.loadSize) and does a random crop of size (opt.fineSize, opt.fineSize). 'crop' skips the resizing step and only performs random cropping. 'scale_width' resizes the image to have width opt.fineSize while keeping the aspect ratio. 'scale_width_and_crop' first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize).

NOTE: one should not expect ComboGAN to work on just any combination of input and output datasets (e.g. dogs<->houses). We find it works better if two datasets share similar visual content. For example, landscape painting<->landscape photographs works much better than portrait painting <-> landscape photographs.

Owner
Asha Anoosheh
Asha Anoosheh
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022