Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Overview

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video]

The implementation of the papers

Install

The framework was tested with Python 3.8, PyTorch 1.7.0. and CUDA 11.0. The easiest way to work with the code is to create a new virtual Python environment and install the required packages.

  1. Install the virtualenvwrapper.
  2. Create a new environment and install the required packages.
mkvirtualenv --python=python3.8 tcsr
pip install -r requirements.txt
  1. Install Pytorch3d.
cd ~
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install git+https://github.com/facebookresearch/[email protected]
  1. Get the code and prepare the environment as follows:
git clone [email protected]:bednarikjan/temporally_coherent_surface_reconstruction.git
git submodule update --init --recursive
export PYTHONPATH="{PYTHONPATH}:path/to/dir/temporally_coherent_surface_reconstruction"

Get the Data

The project was tested on 6 base datasets (and their derivatives). Each datasets has to be processed so as to generate the input point clouds for training, the GT correspondences for evauluation and other auxilliary data. To do so, please use the individual scripts in tcsr/process_datasets. For each dataset, follow these steps:

  1. Download the data (links below).
  2. Open the script <dataset_name>.py and set the input/output paths.
  3. Run the script: python <dataset_name>.py

1. ANIM

  • Download the sequences horse gallop, horse collapse, camel gallop, camel collapse, and elephant gallop.
  • Download the sequence walking cat.

2. AMA

  • Download all 10 sequences, meshes only.

3. DFAUST

4. CAPE

  • Request the access to the raw scans and download it.
  • At the time of writing the paper (September 2021) four subjects (00032, 00096, 00159, 03223) were available and used in the paper.

5. INRIA

  • Request the access to the dataset and download it.
  • At the time of writing the paper (September 2021), four subjects (s1, s2, s3, s6) were available and used in the paper.

6. CMU

Train

The provided code allows for training our proposed method (OUR) but also the other atlas based approaches Differential Surface Representation (DSR) and AtlasNet (AN). The training is configured using the *.yaml configuration scripts in tcsr/train/configs.

There are 9 sample configuration files our_<dataset_name>.yaml which train OUR on each individual dataset and 2 sample configuration files an_anim.yaml, dsr_anim.yaml which train AN and DSR respectivelly on ANIM dataset.

By default, the trainin uses the exact settings as in the paper, namely it trains for 200'000 iterations using SGD, learning rate of 0.001 and batch size of 4. This can be altered in the configuration files.

Before starting the training, follow these steps:

  • Open the source file tcsr/data/data_loader.py and set the paths to the datasets in each dataset class.
  • Open the desired training configuration *.yaml file in tcsr/train/configs/ and set the output path for the training run data in the attribute path_train_run.

Start the training usint the script tcsr/train/train.py:

python train.py --conf configs/<file_name>.yaml

By default the script saves the training progress each 2000 iterations so you can safely kill it at any point and resume the trianing later using:

python train.py --cont path/to/training_run/root_dir

Evaluate

To evaluate a trianed model on the dense correspondence prediction task, use the script tcsr/evaluate/eval_dataset.py which allows for evaluation of multiple sequences (i.e. individual training runs within one dataset) at once. Please have a look at the command line arguments in the file.

An example of how to run the evaluation for the training runs contained in the root directory train_runs_root corresponding to 2 training runs run for the sequences cat_walk and horse_gallop within ANIM dataset:

python eval_dataset.py /path/to/train_runs_root --ds anim --include_seqs cat_walk horse_gallop  

The script produces a *.csv file in train_runs_root with the 4 measured metrics (see the paper).

Visualize

There are currently two ways to visualize the predictions.

1. Tensorboard

By default, the training script saves the GT and the predicted point clouds (for a couple of random data samples) each 2000 iterations. These can be viewed within Tensorboard. Each patch is visualized with a different color. This visualization is mostly useful as a sanity check during the trianing to see that the model is converging as expected.

  • Navigate to the root directory of the trianing runs and run:
tensorboard --logdir=. --port=8008 --bind_all
  • Open your browser and navigate to http://localhost:8008/

2. Per-sequence reconstruction GIF

You can view the reconstructed surfaces as a patch-wise textured mesh as a video within a GIF file. For this purpose, use the IPython Notebook file tcsr/visualize/render_uv.ipynb and open it in jupyterlab which allows for viewing the GIF right after running the code.

The rendering parameters (such as the camera location, texturing mode, gif speed etc.) are set usin the configuration file tcsr/visualize/conf_patches.yaml. There are sample configurations for the sequence cat_walk, which can be used to write configurations for other sequences/datasets.

Before running the cells, set the variables in the second cell (paths, models, data).

Citation

@inproceedings{bednarik2021temporally_coherent,
   title = {Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases},
   author = {Bednarik, Jan and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal and Aigerman, Noam},
   booktitle = {Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year = {2021}
}

@inproceedings{bednarik2021temporally_consistent,
   title = {Temporally-Consistent Surface Reconstruction via Metrically-Consistent Atlases},
   author = {Bednarik, Jan and Aigerman, Noam and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal},
   booktitle = {arXiv},
   year = {2021}
}

Acknowledgements

This work was partially done while the main author was an intern at Adobe Research.

TODO

  • Add support for visualizing the correspondence error heatmap on the GT mesh.
  • Add support for visualizing the colorcoded correspondences on the GT mesh.
  • Add the support for generating the pre-aligned AMAa dataset using ICP.
  • Add the code for the nonrigid ICP experiments.
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022