Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

Related tags

Deep LearningNBFNet
Overview

NBFNet: Neural Bellman-Ford Networks

This is the official codebase of the paper

Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang

NeurIPS 2021

Overview

NBFNet is a graph neural network framework inspired by traditional path-based methods. It enjoys the advantages of both traditional path-based methods and modern graph neural networks, including generalization in the inductive setting, interpretability, high model capacity and scalability. NBFNet can be applied to solve link prediction on both homogeneous graphs and knowledge graphs.

NBFNet

This codebase is based on PyTorch and TorchDrug. It supports training and inference with multiple GPUs or multiple machines.

Installation

You may install the dependencies via either conda or pip. Generally, NBFNet works with Python 3.7/3.8 and PyTorch version >= 1.8.0.

From Conda

conda install torchdrug pytorch=1.8.2 cudatoolkit=11.1 -c milagraph -c pytorch-lts -c pyg -c conda-forge
conda install ogb easydict pyyaml -c conda-forge

From Pip

pip install torch==1.8.2+cu111 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install torchdrug
pip install ogb easydict pyyaml

Reproduction

To reproduce the results of NBFNet, use the following command. All the datasets will be automatically downloaded in the code.

python script/run.py -c config/inductive/wn18rr.yaml --gpus [0] --version v1

We provide the hyperparameters for each experiment in configuration files. All the configuration files can be found in config/*/*.yaml.

For experiments on inductive relation prediction, you need to additionally specify the split version with --version v1.

To run NBFNet with multiple GPUs or multiple machines, use the following commands

python -m torch.distributed.launch --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus [0,1,2,3]
python -m torch.distributed.launch --nnodes=4 --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus[0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]

Visualize Interpretations on FB15k-237

Once you have models trained on FB15k237, you can visualize the path interpretations with the following line. Please replace the checkpoint with your own path.

python script/visualize.py -c config/knowledge_graph/fb15k237_visualize.yaml --checkpoint /path/to/nbfnet/experiment/model_epoch_20.pth

Evaluate ogbl-biokg

Due to the large size of ogbl-biokg, we only evaluate on a small portion of the validation set during training. The following line evaluates a model on the full validation / test sets of ogbl-biokg. Please replace the checkpoint with your own path.

python script/run.py -c config/knowledge_graph/ogbl-biokg_test.yaml --checkpoint /path/to/nbfnet/experiment/model_epoch_10.pth

Results

Here are the results of NBFNet on standard benchmark datasets. All the results are obtained with 4 V100 GPUs (32GB). Note results may be slightly different if the model is trained with 1 GPU and/or a smaller batch size.

Knowledge Graph Completion

Dataset MR MRR [email protected] [email protected] [email protected]
FB15k-237 114 0.415 0.321 0.454 0.599
WN18RR 636 0.551 0.497 0.573 0.666
ogbl-biokg - 0.829 0.768 0.870 0.946

Homogeneous Graph Link Prediction

Dataset AUROC AP
Cora 0.956 0.962
CiteSeer 0.923 0.936
PubMed 0.983 0.982

Inductive Relation Prediction

Dataset [email protected] (50 sample)
v1 v2 v3 v4
FB15k-237 0.834 0.949 0.951 0.960
WN18RR 0.948 0.905 0.893 0.890

Frequently Asked Questions

  1. The code is stuck at the beginning of epoch 0.

    This is probably because the JIT cache is broken. Try rm -r ~/.cache/torch_extensions/* and run the code again.

Citation

If you find this codebase useful in your research, please cite the following paper.

@article{zhu2021neural,
  title={Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction},
  author={Zhu, Zhaocheng and Zhang, Zuobai and Xhonneux, Louis-Pascal and Tang, Jian},
  journal={arXiv preprint arXiv:2106.06935},
  year={2021}
}
Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022