Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

Related tags

Deep LearningNBFNet
Overview

NBFNet: Neural Bellman-Ford Networks

This is the official codebase of the paper

Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, Jian Tang

NeurIPS 2021

Overview

NBFNet is a graph neural network framework inspired by traditional path-based methods. It enjoys the advantages of both traditional path-based methods and modern graph neural networks, including generalization in the inductive setting, interpretability, high model capacity and scalability. NBFNet can be applied to solve link prediction on both homogeneous graphs and knowledge graphs.

NBFNet

This codebase is based on PyTorch and TorchDrug. It supports training and inference with multiple GPUs or multiple machines.

Installation

You may install the dependencies via either conda or pip. Generally, NBFNet works with Python 3.7/3.8 and PyTorch version >= 1.8.0.

From Conda

conda install torchdrug pytorch=1.8.2 cudatoolkit=11.1 -c milagraph -c pytorch-lts -c pyg -c conda-forge
conda install ogb easydict pyyaml -c conda-forge

From Pip

pip install torch==1.8.2+cu111 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install torchdrug
pip install ogb easydict pyyaml

Reproduction

To reproduce the results of NBFNet, use the following command. All the datasets will be automatically downloaded in the code.

python script/run.py -c config/inductive/wn18rr.yaml --gpus [0] --version v1

We provide the hyperparameters for each experiment in configuration files. All the configuration files can be found in config/*/*.yaml.

For experiments on inductive relation prediction, you need to additionally specify the split version with --version v1.

To run NBFNet with multiple GPUs or multiple machines, use the following commands

python -m torch.distributed.launch --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus [0,1,2,3]
python -m torch.distributed.launch --nnodes=4 --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus[0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]

Visualize Interpretations on FB15k-237

Once you have models trained on FB15k237, you can visualize the path interpretations with the following line. Please replace the checkpoint with your own path.

python script/visualize.py -c config/knowledge_graph/fb15k237_visualize.yaml --checkpoint /path/to/nbfnet/experiment/model_epoch_20.pth

Evaluate ogbl-biokg

Due to the large size of ogbl-biokg, we only evaluate on a small portion of the validation set during training. The following line evaluates a model on the full validation / test sets of ogbl-biokg. Please replace the checkpoint with your own path.

python script/run.py -c config/knowledge_graph/ogbl-biokg_test.yaml --checkpoint /path/to/nbfnet/experiment/model_epoch_10.pth

Results

Here are the results of NBFNet on standard benchmark datasets. All the results are obtained with 4 V100 GPUs (32GB). Note results may be slightly different if the model is trained with 1 GPU and/or a smaller batch size.

Knowledge Graph Completion

Dataset MR MRR [email protected] [email protected] [email protected]
FB15k-237 114 0.415 0.321 0.454 0.599
WN18RR 636 0.551 0.497 0.573 0.666
ogbl-biokg - 0.829 0.768 0.870 0.946

Homogeneous Graph Link Prediction

Dataset AUROC AP
Cora 0.956 0.962
CiteSeer 0.923 0.936
PubMed 0.983 0.982

Inductive Relation Prediction

Dataset [email protected] (50 sample)
v1 v2 v3 v4
FB15k-237 0.834 0.949 0.951 0.960
WN18RR 0.948 0.905 0.893 0.890

Frequently Asked Questions

  1. The code is stuck at the beginning of epoch 0.

    This is probably because the JIT cache is broken. Try rm -r ~/.cache/torch_extensions/* and run the code again.

Citation

If you find this codebase useful in your research, please cite the following paper.

@article{zhu2021neural,
  title={Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction},
  author={Zhu, Zhaocheng and Zhang, Zuobai and Xhonneux, Louis-Pascal and Tang, Jian},
  journal={arXiv preprint arXiv:2106.06935},
  year={2021}
}
Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022