A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Overview

Panoptic Mapping

This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based approach that leverages panoptic scene understanding towards adaptive spatio-temporally consistent volumetric mapping, as well as regular, monolithic semantic mapping.

combined

Multi-resolution 3D Reconstruction, active and inactive panoptic submaps for temporal consistency, online change detection, and more.

Table of Contents

Credits

Setup

Examples

Other

Paper

If you find this package useful for your research, please consider citing our paper:

  • Lukas Schmid, Jeffrey Delmerico, Johannes Schönberger, Juan Nieto, Marc Pollefeys, Roland Siegwart, and Cesar Cadena. "Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency" arXiv preprint arXiv:2109.10165 (2021). [ArXiv]
    @ARTICLE{schmid2021panoptic,
      title={Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency},
      author={Schmid, Lukas and Delmerico, Jeffrey and Sch{\"o}nberger, Johannes and Nieto, Juan and Pollefeys, Marc and Siegwart, Roland and Cadena, Cesar},
      journal={arXiv preprint arXiv:2109.10165},
      year={2021}
    }

Video

A short video overview explaining the approach will be released upon publication.

Installation

Installation instructions for Linux. The repository was developed on Ubuntu 18.04 with ROS melodic and also tested on Ubuntu 20.04 with ROS noetic.

Prerequisites

  1. If not already done so, install ROS (Desktop-Full is recommended).

  2. If not already done so, create a catkin workspace with catkin tools:

    # Create a new workspace
    sudo apt-get install python-catkin-tools
    mkdir -p ~/catkin_ws/src
    cd ~/catkin_ws
    catkin init
    catkin config --extend /opt/ros/$ROS_DISTRO
    catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo
    catkin config --merge-devel

Installation

  1. Install system dependencies:

    sudo apt-get install python-wstool python-catkin-tools
  2. Move to your catkin workspace:

    cd ~/catkin_ws/src
  3. Download repo using SSH:

    git clone [email protected]:ethz-asl/panoptic_mapping.git
  4. Download and install package dependencies using ros install:

    • If you created a new workspace.
    wstool init . ./panoptic_mapping/panoptic_mapping.rosinstall
    wstool update
    • If you use an existing workspace. Notice that some dependencies require specific branches that will be checked out.
    wstool merge -t . ./panoptic_mapping/panoptic_mapping.rosinstall
    wstool update
  5. Compile and source:

    catkin build panoptic_mapping_utils
    source ../devel/setup.bash

Datasets

The datasets described in the paper and used for the demo can be downloaded from the ASL Datasets.

To a utility script is provided to directly download the data:

roscd panoptic_mapping_utils
export FLAT_DATA_DIR="/home/$USER/Documents"  # Or whichever path you prefer.
chmod +x panoptic_mapping_utils/scripts/download_flat_dataset.sh
./panoptic_mapping_utils/scripts/download_flat_dataset.sh

Additional data to run the mapper on the 3RScan dataset will follow.

Examples

Running the Panoptic Mapper

This example explains how to run the Panoptic Multi-TSDF mapper on the flat dataset.

  1. First, download the flat dataset:

    export FLAT_DATA_DIR="/home/$USER/Documents"  # Or whichever path you prefer.
    chmod +x panoptic_mapping_utils/scripts/download_flat_dataset.sh
    ./panoptic_mapping_utils/scripts/download_flat_dataset.sh
    
  2. Replace the data base_path in launch/run.launch (L10) and file_name in config/mapper/flat_groundtruth.yaml (L15) to the downloaded path.

  3. Run the mapper:

    roslaunch panoptic_mapping_ros run.launch
    
  4. You should now see the map being incrementally built:

  5. After the map finished building, you can save the map:

    rosservice call /panoptic_mapper/save_map "file_path: '/path/to/run1.panmap'" 
    
  6. Terminate the mapper pressing Ctrl+C. You can continue the experiment on run2 of the flat dataset by changing the base_path-ending in launch/run.launch (L10) to run2, and load_map and load_path in launch/run.launch (L26-27) to true and /path/to/run1.panmap, respectively. Optionally, you can also change the color_mode in config/mapper/flat_groundtruth.yaml (L118) to change to better highlight the change detection at work.

    roslaunch panoptic_mapping_ros run.launch
    
  7. You should now see the map being updated based on the first run:

Monolithic Semantic Mapping

This example will follow shortly.

Running the RIO Dataset

This example will follow shortly.

Contributing

panoptic_mapping is an open-source project, any contributions are welcome!

For issues, bugs, or suggestions, please open a GitHub Issue.

To add to this repository:

  • Please employ the feature-branch workflow.
  • Setup our auto-formatter for coherent style (we follow the google style guide):
    # Download the linter
    cd <linter_dest>
    git clone [email protected]:ethz-asl/linter.git
    cd linter
    echo ". $(realpath setup_linter.sh)" >> ~/.bashrc
    bash
    roscd panoptic_mapping/..
    init_linter_git_hooks
    # You're all set to go!
    
  • Please open a Pull Request for your changes.
  • Thank you for contributing!
Owner
ETHZ ASL
ETHZ ASL
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022