《Truly shift-invariant convolutional neural networks》(2021)

Overview

Truly shift-invariant convolutional neural networks [Paper]

Authors: Anadi Chaman and Ivan Dokmanić

Convolutional neural networks were always assumed to be shift invariant, until recently when it was shown that the classification accuracy of a trained CNN can take a serious hit with merely a 1-pixel shift in input image. One of the primary reasons for this problem is the use of downsampling (popularly known as stride) layers in the networks.

In this work, we present Adaptive Polyphase Sampling (APS), an easy-to-implement non-linear downsampling scheme that completely gets rid of this problem. The resulting CNNs yield 100% consistency in classification performance under shifts without any loss in accuracy. In fact, unlike prior works, the networks exhibit perfect consistency even before training, making it the first approach that makes CNNs truly shift invariant.

This repository contains our code in PyTorch to implement APS.

ImageNet training

To train ResNet-18 model with APS on ImageNet use the following commands (training and evaluation with circular shifts).

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET

For training on multiple GPUs:

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET --workers NUM_WORKERS --dist-url tcp://127.0.0.1:FREE-PORT --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0

--arch is used to specify the architecture. To use ResNet18 with APS layer and blur filter of size j, pass 'resnet18_apsj' as the argument to --arch. List of currently supported network architectures are here.

--circular_data_aug can be used to additionally train the networks with random circular shifts.

Results are saved in OUT_DIR.

CIFAR-10 training

The following commands run our implementation on CIFAR-10 dataset.

cd cifar10_exps
python3 main.py --arch 'resnet18_aps' --filter_size FILTER_SIZE --validate_consistency --seed_num 0 --device_id 0 --model_folder CURRENT_MODEL_DIRECTORY --results_root_path ROOT_DIRECTORY --dataset_path PATH-TO-DATASET

--data_augmentation_flag can be used to additionally train the networks with randomly shifted images. FILTER_SIZE can take the values between 1 to 7. The list of CNN architectures currently supported can be found here.

The results are saved in the path: ROOT_DIRECTORY/CURRENT_MODEL_DIRECTORY/

Owner
Anadi Chaman
Anadi Chaman
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023