This repository lets you interact with Lean through a REPL.

Related tags

Deep Learninglean-gym
Overview

lean-gym

This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-gym.

Setup

# Download pre-built binaries and build the project (targeting mathlib).
bash ./scripts/setup.sh

Usage

lean --run src/repl.lean

Starts a fresh REPL. Once started, the REPL accepts the following commands:

  • init_search: takes a declaration name as well as a list of open namespaces to initialize a search at the given declaration opening the provided namespaces, and returning the initial tactic state (along with a fresh search_id and tactic_state_id).
  • run_tac: takes a search_id, a tactic_state_id and a tactic to apply at the tactic state denoted by the provided ids.
  • clear_search: takes a search_id to clear all state related to a search.

The commands can be interleaved freely enabling the parallelization of multiple proof searches against the same REPL.

$ lean --run src/repl.lean

["init_search", ["intermediate_field.adjoin.range_algebra_map_subset", "intermediate_field finite_dimensional polynomial"]]
{"error":null,"search_id":"0","tactic_state":"⊢ ∀ (F : Type u_1) [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (S : set E),\tset.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"0"}

["init_search", ["int.prime.dvd_mul", ""]]
{"error":null,"search_id":"1","tactic_state":"⊢ ∀ {m n : ℤ} {p : ℕ}, nat.prime p → ↑p ∣ m * n → p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"0"}

["run_tac",["0","0","intros"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E\t⊢ set.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"1"}

["run_tac",["1","0","intros"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"1"}

["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs * n.nat_abs","tactic_state_id":"2"}

["run_tac",["1","2","rw ← int.nat_abs_mul"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ (m * n).nat_abs","tactic_state_id":"3"}

["run_tac",["1","3","simp"]]
{"error":"run_tac_failed: pos=(some ⟨1, 2⟩) msg=simplify tactic failed to simplify","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","5","exact int.coe_nat_dvd_left.mp h"]]
{"error":"unknown_id: search_id=1 tactic_state_id=5","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","3","exact int.coe_nat_dvd_left.mp h"]]
{"error":null,"search_id":"1","tactic_state":"no goals","tactic_state_id":"4"}

["clear_search",["1"]]
{"error":null,"search_id":"1","tactic_state":null,"tactic_state_id":null}

["run_tac",["0","1","intros x hx,"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\thx : x ∈ set.range ⇑(algebra_map F E)\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"2"}

["run_tac",["0","2","cases hx with f hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"3"}

["run_tac",["0","3","rw ← hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ ⇑(algebra_map F E) f ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"4"}

["run_tac",["0","4","exact adjoin.algebra_map_mem F S f"]]
{"error":null,"search_id":"0","tactic_state":"no goals","tactic_state_id":"5"}

["clear_search",["0"]]
{"error":null,"search_id":"0","tactic_state":null,"tactic_state_id":null}

Declaration names

Declaration names and open namespaces as recorded by lean_proof_recording are available in the data/ directory to be used with the init_search command.

Notes

The REPL is subject to crashes in rare cases. Empirically such crash happens no more than ~0.01% of the time.

When a tactic state is reached with no left goals, some custom logic is run to check that the resulting proof's type matches the top level goal type and does not rely on sorry. We also check for the presence of undefined in the proof term. As an example, the following MiniF2F proofs will safely fail with error proof_validation_failed.

["init_search", ["mathd_algebra_35", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "sorry"]]
["init_search", ["induction_divisibility_3divnto3m2n", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "rw [add_comm]"]]
["run_tac", ["0", "2", "have h3 : 1 * (n + 1) ≤ (n + 1)"]]
["run_tac", ["0", "3", "rw one_mul"]]
["run_tac", ["0", "4", "apply dvd_trans"]]
["run_tac", ["0", "5", "swap"]]
["run_tac", ["0", "6", "simp []"]]
["init_search", ["mathd_numbertheory_13", ""]]
["run_tac", ["0", "0", "intros u v hu hv hsum"]]
["run_tac", ["0", "1", "intro h"]]
["run_tac", ["0", "2", "contrapose h"]]
["run_tac", ["0", "3", "intro hn"]]
["run_tac", ["0", "4", "exact not_lt_of_lt hn undefined"]]
Owner
OpenAI
OpenAI
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023