Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

Overview

CARLA-Roach

This is the official code release of the paper
End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
by Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu and Luc van Gool, accepted at ICCV 2021.

It contains the code for benchmark, off-policy data collection, on-policy data collection, RL training and IL training with DAGGER. It also contains trained models of RL experts and IL agents. The supplementary videos can be found at the paper's homepage.

Installation

Please refer to INSTALL.md for installation. We use AWS EC2, but you can also install and run all experiments on your computer or cluster.

Quick Start: Collect an expert dataset using Roach

Roach is an end-to-end trained agent that drives better and more naturally than hand-crafted CARLA experts. To collect a dataset from Roach, use run/data_collect_bc.sh and modify the following arguments:

  • save_to_wandb: set to False if you don't want to upload the dataset to W&B.
  • dataset_root: local directory for saving the dataset.
  • test_suites: default is eu_data which collects data in Town01 for the NoCrash-dense benchmark. Available configurations are found here. You can also create your own configuration.
  • n_episodes: how many episodes to collect, each episode will be saved to a separate h5 file.
  • agent/cilrs/obs_configs: observation (i.e. sensor) configuration, default is central_rgb_wide. Available configurations are found here. You can also create your own configuration.
  • inject_noise: default is True. As introduced in CILRS, triangular noise is injected to steering and throttle such that the ego-vehicle does not always follow the lane center. Very useful for imitation learning.
  • actors.hero.terminal.kwargs.max_time: Maximum duration of an episode, in seconds.
  • Early stop the episode if traffic rule is violated, such that the collected dataset is error-free.
    • actors.hero.terminal.kwargs.no_collision: default is True.
    • actors.hero.terminal.kwargs.no_run_rl: default is False.
    • actors.hero.terminal.kwargs.no_run_stop: default is False.

Benchmark

To benchmark checkpoints, use run/benchmark.sh and modify the arguments to select different settings. We recommend g4dn.xlarge with 50 GB free disk space for video recording. Use screen if you want to run it in the background

screen -L -Logfile ~/screen.log -d -m run/benchmark.sh

Trained Models

The trained models are hosted here on W&B. Given the corresponding W&B run path, our code will automatically download and load the checkpoint with the configuration yaml file.

The following checkpoints are used to produce the results reported in our paper.

  • To benchmark the Autopilot, use benchmark() with agent="roaming".
  • To benchmark the RL experts, use benchmark() with agent="ppo" and set agent.ppo.wb_run_path to one of the following.
    • iccv21-roach/trained-models/1929isj0: Roach
    • iccv21-roach/trained-models/1ch63m76: PPO+beta
    • iccv21-roach/trained-models/10pscpih: PPO+exp
  • To benchmark the IL agents, use benchmark() with agent="cilrs" and set agent.cilrs.wb_run_path to one of the following.
    • Checkpoints trained for the NoCrash benchmark, at DAGGER iteration 5:
      • iccv21-roach/trained-models/39o1h862: L_A(AP)
      • iccv21-roach/trained-models/v5kqxe3i: L_A
      • iccv21-roach/trained-models/t3x557tv: L_K
      • iccv21-roach/trained-models/1w888p5d: L_K+L_V
      • iccv21-roach/trained-models/2tfhqohp: L_K+L_F
      • iccv21-roach/trained-models/3vudxj38: L_K+L_V+L_F
      • iccv21-roach/trained-models/31u9tki7: L_K+L_F(c)
      • iccv21-roach/trained-models/aovrm1fs: L_K+L_V+L_F(c)
    • Checkpoints trained for the LeaderBoard benchmark, at DAGGER iteration 5:
      • iccv21-roach/trained-models/1myvm4mw: L_A(AP)
      • iccv21-roach/trained-models/nw226h5h: L_A
      • iccv21-roach/trained-models/12uzu2lu: L_K
      • iccv21-roach/trained-models/3ar2gyqw: L_K+L_V
      • iccv21-roach/trained-models/9rcwt5fh: L_K+L_F
      • iccv21-roach/trained-models/2qq2rmr1: L_K+L_V+L_F
      • iccv21-roach/trained-models/zwadqx9z: L_K+L_F(c)
      • iccv21-roach/trained-models/21trg553: L_K+L_V+L_F(c)

Available Test Suites

Set argument test_suites to one of the following.

  • NoCrash-busy
    • eu_test_tt: NoCrash, busy traffic, train town & train weather
    • eu_test_tn: NoCrash, busy traffic, train town & new weather
    • eu_test_nt: NoCrash, busy traffic, new town & train weather
    • eu_test_nn: NoCrash, busy traffic, new town & new weather
    • eu_test: eu_test_tt/tn/nt/nn, all 4 conditions in one file
  • NoCrash-dense
    • nocrash_dense: NoCrash, dense traffic, all 4 conditions
  • LeaderBoard:
    • lb_test_tt: LeaderBoard, busy traffic, train town & train weather
    • lb_test_tn: LeaderBoard, busy traffic, train town & new weather
    • lb_test_nt: LeaderBoard, busy traffic, new town & train weather
    • lb_test_nn: LeaderBoard, busy traffic, new town & new weather
    • lb_test: lb_test_tt/tn/nt/nn all, 4 conditions in one file
  • LeaderBoard-all
    • cc_test: LeaderBoard, busy traffic, all 76 routes, dynamic weather

Collect Datasets

We recommend g4dn.xlarge for dataset collecting. Make sure you have enough disk space attached to the instance.

Collect Off-Policy Datasets

To collect off-policy datasets, use run/data_collect_bc.sh and modify the arguments to select different settings. You can use Roach (given a checkpoint) or the Autopilot to collect off-policy datasets. In our paper, before the DAGGER training the IL agents are initialized via behavior cloning (BC) using an off-policy dataset collected in this way.

Some arguments you may want to modify:

  • Set save_to_wandb=False if you don't want to upload the dataset to W&B.
  • Select the environment for collecting data by setting the argument test_suites to one of the following
    • eu_data: NoCrash, train town & train weather. We collect n_episodes=80 for BC dataset on NoCrash, that is around 75 GB and 6 hours of data.
    • lb_data: LeaderBoard, train town & train weather. We collect n_episodes=160 for BC dataset on LeaderBoard, that is around 150 GB and 12 hours of data.
    • cc_data: CARLA Challenge, all six maps (Town1-6), dynamic weather. We collect n_episodes=240 for BC dataset on CARLA Challenge, that is around 150 GB and 18 hours of data.
  • For RL experts, the used checkpoint is set via agent.ppo.wb_run_path and agent.ppo.wb_ckpt_step.
    • agent.ppo.wb_run_path is the W&B run path where the RL training is logged and the checkpoints are saved.
    • agent.ppo.wb_ckpt_step is the step of the checkpoint you want to use. If it's an integer, the script will find the checkpoint closest to that step. If it's null, the latest checkpoint will be used.

Collect On-Policy Datasets

To collect on-policy datasets, use run/data_collect_dagger.sh and modify the arguments to select different settings. You can use Roach or the Autopilot to label on-policy (DAGGER) datasets generated by an IL agent (given a checkpoint). This is done by running the data_collect.py using an IL agent as the driver, and Roach/Autopilot as the coach. So the expert supervisions are generated and recorded on the fly.

Most things are the same as collecting off-policy BC datasets. Here are some changes:

  • Set agent.cilrs.wb_run_path to the W&B run path where the IL training is logged and the checkpoints are saved.
  • By adjusting n_episodes we make sure the size of the DAGGER dataset at each iteration to be around 20% of the BC dataset size.
    • For RL experts we use an n_episodes which is the half of n_episodes of the BC dataset.
    • For the Autopilot we use an n_episodes which is the same as n_episodes of the BC dataset.

Train RL Experts

To train RL experts, use run/train_rl.sh and modify the arguments to select different settings. We recommend to use g4dn.4xlarge for training the RL experts, you will need around 50 GB free disk space for videos and checkpoints. We train RL experts on CARLA 0.9.10.1 because 0.9.11 crashes more often for unknown reasons.

Train IL Agents

To train IL agents, use run/train_il.sh and modify the arguments to select different settings. Training IL agents does not require CARLA and it's a GPU-heavy task. Therefore, we recommend to use AWS p-instances or your cluster to run the IL training. Our implementation follows DA-RB (paper, repo), which trains a CILRS (paper, repo) agent using DAGGER.

The training starts with training the basic CILRS via behavior cloning using an off-policy dataset.

  1. Collect off-policy DAGGER dataset.
  2. Train the IL model.
  3. Benchmark the trained model.

Then repeat the following DAGGER steps until the model achieves decent results.

  1. Collect on-policy DAGGER dataset.
  2. Train the IL model.
  3. Benchmark the trained model.

For the BC training,the following arguments have to be set.

  • Datasets
    • dagger_datasets: a vector of strings, for BC training it should only contain the path (local or W&B) to the BC dataset.
  • Measurement vector
    • agent.cilrs.env_wrapper.kwargs.input_states can be a subset of [speed,vec,cmd]
    • speed: scalar ego_vehicle speed
    • vec: 2D vector pointing to the next GNSS waypoint
    • cmd: one-hot vector of high-level command
  • Branching
    • For 6 branches:
      • agent.cilrs.policy.kwargs.number_of_branches=6
      • agent.cilrs.training.kwargs.branch_weights=[1.0,1.0,1.0,1.0,1.0,1.0]
    • For 1 branch:
      • agent.cilrs.policy.kwargs.number_of_branches=1
      • agent.cilrs.training.kwargs.branch_weights=[1.0]
  • Action Loss
    • L1 action loss
      • agent.cilrs.env_wrapper.kwargs.action_distribution=null
      • agent.cilrs.training.kwargs.action_kl=false
    • KL loss
      • agent.cilrs.env_wrapper.kwargs.action_distribution="beta_shared"
      • agent.cilrs.training.kwargs.action_kl=true
  • Value Loss
    • Disable
      • agent.cilrs.env_wrapper.kwargs.value_as_supervision=false
      • agent.cilrs.training.kwargs.value_weight=0.0
    • Enable
      • agent.cilrs.env_wrapper.kwargs.value_as_supervision=true
      • agent.cilrs.training.kwargs.value_weight=0.001
  • Pre-trained action/value head
    • agent.cilrs.rl_run_path and agent.cilrs.rl_ckpt_step are used to initialize the IL agent's action/value heads with Roach's action/value head.
  • Feature Loss
    • Disable
      • agent.cilrs.env_wrapper.kwargs.dim_features_supervision=0
      • agent.cilrs.training.kwargs.features_weight=0.0
    • Enable
      • agent.cilrs.env_wrapper.kwargs.dim_features_supervision=256
      • agent.cilrs.training.kwargs.features_weight=0.05

During the DAGGER training, a trained IL agent will be loaded and you cannot change the configuration any more. You will have to set

  • agent.cilrs.wb_run_path: the W&B run path where the previous IL training was logged and the checkpoints are saved.
  • agent.cilrs.wb_ckpt_step: the step of the checkpoint you want to use. Leave it as null will load the latest checkpoint.
  • dagger_datasets: vector of strings, W&B run path or local path to DAGGER datasets and the BC dataset in time-reversed order, for example [PATH_DAGGER_DATA_2, PATH_DAGGER_DATA_1, PATH_DAGGER_DATA_0, BC_DATA]
  • train_epochs: optionally you can change it if you want to train for more epochs.

Citation

Please cite our work if you found it useful:

@inproceedings{zhang2021roach,
  title = {End-to-End Urban Driving by Imitating a Reinforcement Learning Coach},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  author = {Zhang, Zhejun and Liniger, Alexander and Dai, Dengxin and Yu, Fisher and Van Gool, Luc},
  year = {2021},
}

License

This software is released under a CC-BY-NC 4.0 license, which allows personal and research use only. For a commercial license, please contact the authors. You can view a license summary here.

Portions of source code taken from external sources are annotated with links to original files and their corresponding licenses.

Acknowledgements

This work was supported by Toyota Motor Europe and was carried out at the TRACE Lab at ETH Zurich (Toyota Research on Automated Cars in Europe - Zurich).

Owner
Zhejun Zhang
PhD Candidate at CVL, ETH Zurich
Zhejun Zhang
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022