Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

Overview

CP-Cluster

Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segmentation:

Confidence Propagation Cluster: Unleash the Full Potential of Object Detectors, Yichun Shen*, Wanli Jiang*, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li,

Contact: [email protected]. Welcome for any questions and comments!

Abstract

It’s been a long history that most object detection methods obtain objects by using the non-maximum suppression(NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable.

Inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods.

Highlights

  • Better accuracy: Compared with all previous NMS-based methods, CP-Cluster manages to achieve better accuracy

  • Fully parallelizable: No box sorting is required, and each candidate box can be handled separately when propagating confidence messages

Main results

Detectors from MMDetection on COCO val/test-dev

Method NMS Soft-NMS CP-Cluster
FRcnn-fpn50 38.4 / 38.7 39.0 / 39.2 39.2 / 39.4
Yolov3 33.5 / 33.5 33.6 / 33.6 34.1 / 34.1
Retina-fpn50 37.4 / 37.7 37.5 / 37.9 38.1 / 38.4
FCOS-X101 42.7 / 42.8 42.7 / 42.8 42.9 / 43.1
AutoAssign-fpn50 40.4 / 40.6 40.5 / 40.7 41.0 / 41.2

Yolov5(v6 model) on COCO val

Model NMS Soft-NMS CP-Cluster
Yolov5s 37.2 37.4 37.5
Yolov5m 45.2 45.3 45.5
Yolov5l 48.8 48.8 49.1
Yolov5x 50.7 50.8 51.0
Yolov5s_1280 44.5 50.8 44.8
Yolov5m_1280 51.1 51.1 51.3
Yolov5l_1280 53.6 53.7 53.8
Yolov5x_1280 54.7 54.8 55.0

Replace maxpooling with CP-Cluster for Centernet(Evaluated on COCO test-dev), where "flip_scale" means flip and multi-scale augmentations

Model maxpool Soft-NMS CP-Cluster
dla34 37.3 38.1 39.2
dla34_flip_scale 41.7 40.6 43.3
hg_104 40.2 40.6 41.1
hg_104_flip_scale 45.2 44.3 46.6

Instance Segmentation(MASK-RCNN, 3X models) from MMDetection on COCO test-dev

Box/Mask AP NMS Soft-NMS CP-Cluster
MRCNN_R50 41.5/37.7 42.0/37.8 42.1/38.0
MRCNN_R101 43.1/38.8 43.6/39.0 43.6/39.1
MRCNN_X101 44.6/40.0 45.2/40.2 45.2/40.2

Integrate into MMCV

Clone the mmcv repo from https://github.com/shenyi0220/mmcv (Cut down by 9/28/2021 from main branch with no extra modifications)

Copy the implementation of "cp_cluster_cpu" in src/nms.cpp to the mmcv nms code("mmcv/ops/csrc/pytorch/nms.cpp")

Borrow the "soft_nms_cpu" API by calling "cp_cluster_cpu" rather than orignal Soft-NMS implementations, so that modify the code like below:

@@ -186,8 +186,8 @@ Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
   if (boxes.device().is_cuda()) {
     AT_ERROR("softnms is not implemented on GPU");
   } else {
-    return softnms_cpu(boxes, scores, dets, iou_threshold, sigma, min_score,
-                       method, offset);
+    return cp_cluster_cpu(boxes, scores, dets, iou_threshold, min_score,
+                          offset, 0.8, 3);
   }
 }

Compile mmcv with source code

MMCV_WITH_OPS=1 pip install -e .

Reproduce Object Detection and Instance Segmentation in MMDetection

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/mmdetection (Cut down by 9/26/2021 from main branch with some config file modifications to call Soft-NMS/CP-Cluster), and install all the dependancies accordingly.

Download models from model zoo

Run below command to reproduce Faster-RCNN-r50-fpn-2x:

python tools/test.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py ./checkpoints/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox

To check original metrics with NMS, you can switch the model config back to use default NMS.

To check Soft-NMS metrics, just re-compile with mmcv without CP-Cluster modifications.

Reproduce Yolov5

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/yolov5 (Cut down by 11/9/2021 from main branch, replacing the default torchvision.nms with CP-Cluster from mmcv), and install all the dependancies accordingly.

Run below command to reproduce the CP-Cluster exp with yolov5s-v6

python val.py --data coco.yaml --conf 0.001 --iou 0.6 --weights yolov5s.pt --batch-size 32

License

For the time being, this implementation is published with NVIDIA proprietary license, and the only usage of the source code is to reproduce the experiments of CP-Cluster. For any possible commercial use and redistribution of the code, pls contact [email protected]

Open Source Limitation

Due to proprietary and patent limitations, for the time being, only CPU implementation of CP-Cluster is open sourced. Full GPU-implementation and looser open source license are in application process.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{yichun2021cpcluster,
  title={Confidence Propagation Cluster: Unleash Full Potential of Object Detectors},
  author={Yichun Shen, Wanli Jiang, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li},
  booktitle={arXiv preprint arXiv:2112.00342},
  year={2021}
}
Owner
Yichun Shen
Yichun Shen
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022