Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Overview

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

The main part of the work focuses on the exploration and study of different approaches which are used for Sentiment Analysis (e.g. Bag of Words, TF-IDF, Word Embeddings). In addition, the work utilizes and compares different classification algorithms for Sentiment Analysis tasks in Natural Language Processing (e.g. Tree based Algorithms, Linear Models and Support Vector Machines).

Author: Nikolas Petrou, MSc in Data Science

Technical-Report and Code Availability

  • The complete text and analysis of the work is available and located in EDA-and-Sentiment-Analysis-on IMDB-Dataset.pdf file
  • The implementation and code of the project is located in the Implementation-Python Files folder.

Overview

The goal of this work focuses on the exploration and study of different approaches which are used for Sentiment Analysis (e.g. Bag of Words, TF-IDF, Word Embeddings). In addition, the work utilizes and compares different classification algorithms for Sentiment Analysis tasks in Natural Language Processing (e.g. Tree based Algorithms, Linear Models and Support Vector Machines).

Dataset

For this work, a large dataset which consists of movie reviews was used. Specifically, the publicly available Internet Movie Database (IMDB) review dataset

The data can be obtained from Kaggle or direcetly from Stanford

Methodology

An abstract methodology scheme of the work is illustrated in the following Figure.

Summarizing, firstly the initial questions were set in respect to the used dataset. Subsequentially, the data scrapping and data collection were performed. In addition, after the data preprocessing steps were performed, different data analytics and analysis were ,employed in order to better understand the data insights. Finally, during the final analysis, different methodologies and models were utilized in order to classify the textual data based on the sentiment. It is crucial to mention that the whole processed followed a cyclical scheme.

Owner
Nikolas Petrou
M.Sc. Data Science student, University of Cyprus (UCY) Research Assistant at the Laboratory of Internet Computing (LInC) B.Sc degree in Computer Science
Nikolas Petrou
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Saptak Bhoumik 14 May 24, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022