CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

Related tags

Text Data & NLPcvss
Overview

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

License: CC BY 4.0

CVSS is a massively multilingual-to-English speech-to-speech translation corpus, covering sentence-level parallel speech-to-speech translation pairs from 21 languages into English. CVSS is derived from the Common Voice speech corpus and the CoVoST 2 speech-to-text translation corpus. The translation speech in CVSS is synthesized with two state-of-the-art TTS models trained on the LibriTTS corpus.

CVSS includes two versions of spoken translation for all the 21 x-en language pairs from CoVoST 2, with each version providing unique values:

  • CVSS-C: All the translation speeches are in a single canonical speaker's voice. Despite being synthetic, these speeches are of very high naturalness and cleanness, as well as having consistent speaking style. These properties ease the modelling of the target speech and enable models to produce high quality translation speech suitable for user-facing applications.

  • CVSS-T: The translation speeches are in voices transferred from the corresponding source speeches. Each translation pair has similar voices on the two sides despite of being in different languages, making this dataset suitable for building models that preserve speakers' voices when translate speech into different languages.

In together with the source speeches originated from Common Voice, they make two multilingual speech-to-speech tranlsation datasets each with about 1,900 hours of speech.

In addition to translation speech, CVSS also provides normalized translation text matching the pronunciation in the translation speech (e.g. on numbers, currencies, acronyms, etc.), which can be use for both model training as well as standalizing evaluation.

Please check out our paper for the detailed description of this corpus, as well as the baseline models we trained on both datasets.

Getting the data

The translation speech and the normalized translation text in CVSS can be downloaded from the links in the following table:

Source language Code CVSS-C CVSS-T
Arabic ar link link
Catalan ca link link
Welsh cy link link
German de link link
Estonian et link link
Spanish es link link
Persian fa link link
French fr link link
Indonesian id link link
Italian it link link
Japanese ja link link
Latvian lv link link
Mongolian mn link link
Dutch nl link link
Portuguese pt link link
Russian ru link link
Slovenian sl link link
Swedish sv link link
Tamil ta link link
Turkish tr link link
Chinese zh link link

Each tar.gz file in the links above includes train, dev and test directories containing audio clips as the translation speech, as well as train.tsv, dev.tsv and test.tsv files containing the normalized translation text. The normalized translation text files included in CVSS-C and CVSS-T are identical.

These translation audio clips and translation texts are to be paired with the Common Voice release version 4 (required) based on the audio file names. If you need the original translation text without the normalization, they are provided by CoVoST 2.

License

CVSS is released under the very permissive Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Citation

Please cite this paper when referencing the CVSS corpus:

@misc{jia2022cvss,
    title={{CVSS} Corpus and Massively Multilingual Speech-to-Speech Translation},
    author={Jia, Ye and Tadmor Ramanovich, Michelle and Wang, Quan and Zen, Heiga},
    eprint={2201.03713},
    archivePrefix={arXiv},
    year={2022}
}
Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Yuqing Xie 2 Feb 17, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022