REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

Overview

What is MUSE?

MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE).
MUSE/USE models encode sentences into embedding vectors of fixed size.

MUSE paper: link.
USE paper: link.
USE Visually Explainer article: link.

What is MUSE as Service?

MUSE as Service is REST API for sentence tokenization and embedding using MUSE.
It is written on flask + gunicorn.
You can configure gunicorn with gunicorn.conf.py file.

Installation

# clone repo
git clone https://github.com/dayyass/muse_as_service.git

# install dependencies
cd muse_as_service
pip install -r requirements.txt

Run Service

To launch a service use a docker container (either locally or on a server):

docker build -t muse_as_service .
docker run -d -p 5000:5000 --name muse_as_service muse_as_service

NOTE: you can launch a service without docker using gunicorn: sh ./gunicorn.sh, or flask: python app.py, but it is preferable to launch the service inside the docker container.
NOTE: instead of building a docker image, you can pull it from Docker Hub:
docker pull dayyass/muse_as_service

Usage

After you launch the service, you can tokenize and embed any {sentence} using GET requests ({ip} is the address where the service was launched):

http://{ip}:5000/tokenize?sentence={sentence}
http://{ip}:5000/embed?sentence={sentence}

You can use python requests library to work with GET requests (example notebook):

import numpy as np
import requests

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# tokenizer
response = requests.get(
    url=f"http://{ip}:{port}/tokenize",
    params={"sentence": f"{sentence}"},
)
tokenized_sentence = response.json()["content"]

# embedder
response = requests.get(
    url=f"http://{ip}:{port}/embed",
    params={"sentence": f"{sentence}"},
)
embedding = np.array(response.json()["content"][0])

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

But it is better to use the built-in client MUSEClient for sentence tokenization and embedding, that wraps the functionality of the requests library and provides the user with a simpler interface (example notebook):

from muse_as_service import MUSEClient

ip = "localhost"
port = 5000

sentence = "This is sentence example."

# init client
client = MUSEClient(
    ip=ip,
    port=port,
)

# tokenizer
tokenized_sentence = client.tokenize(sentence)

# embedder
embedding = client.embed(sentence)

# results
print(tokenized_sentence)  # ['▁This', '▁is', '▁sentence', '▁example', '.']
print(embedding.shape)  # (512,)

Citation

If you use muse_as_service in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass_muse_as_service,
    author = {El-Ayyass, Dani},
    title = {Multilingual Universal Sentence Encoder REST API},
    howpublished = {\url{https://github.com/dayyass/muse_as_service}},
    year = {2021},
}
You might also like...
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Some embedding layer implementation using ivy library
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Comments
  • How to change batch size

    How to change batch size

    I got the following OOM message: Error on request: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 324, in run_wsgi execute(self.server.app) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\werkzeug\serving.py", line 313, in execute application_iter = app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2091, in call return self.wsgi_app(environ, start_response) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2076, in wsgi_app response = self.handle_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1518, in full_dispatch_request rv = self.handle_user_exception(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 271, in error_router return original_handler(e) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1516, in full_dispatch_request rv = self.dispatch_request() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\app.py", line 1502, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 467, in wrapper resp = resource(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask\views.py", line 84, in view return current_app.ensure_sync(self.dispatch_request)(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_restful_init_.py", line 582, in dispatch_request resp = meth(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\flask_jwt_extended\view_decorators.py", line 127, in decorator return current_app.ensure_sync(fn)(*args, **kwargs) File "F:\repos3\muse-as-service\muse-as-service\src\muse_as_service\endpoints.py", line 56, in get embedding = self.embedder(args["sentence"]).numpy().tolist() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\keras\engine\base_layer.py", line 1037, in call outputs = call_fn(inputs, *args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow_hub\keras_layer.py", line 229, in call result = f() File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\saved_model\load.py", line 664, in _call_attribute return instance.call(*args, **kwargs) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in call result = self._call(*args, **kwds) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\def_function.py", line 957, in _call filtered_flat_args, self._concrete_stateful_fn.captured_inputs) # pylint: disable=protected-access File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 1964, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\function.py", line 596, in call ctx=ctx) File "D:\ProgramData\Anaconda3\envs\muse-as-a-service\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute inputs, attrs, num_outputs) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/layer_prepostprocess/layer_norm/add_1/_128]]
    

    Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    (1) Resource exhausted: OOM when allocating tensor with shape[32851,782,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node StatefulPartitionedCall/StatefulPartitionedCall/EncoderTransformer/Transformer/SparseTransformerEncode/Layer_0/SelfAttention/SparseMultiheadAttention/ComputeQKV/ScatterNd}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

    question 
    opened by jiangweiatgithub 3
  • slow response from service

    slow response from service

    I have been comparing the efficency between the muse as service and the original "hub.load" method, and see a noticeable slow reponse in the former, both running separately on my Quadro RTX 5000. Can I safely assume this slowness is due to the very nature of the web service? If so, is there any way to improve it?

    invalid 
    opened by jiangweiatgithub 1
Releases(v1.1.2)
Owner
Dani El-Ayyass
Senior NLP Engineer @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022