Tools, wrappers, etc... for data science with a concentration on text processing

Overview

Rosetta

Tools for data science with a focus on text processing.

  • Focuses on "medium data", i.e. data too big to fit into memory but too small to necessitate the use of a cluster.
  • Integrates with existing scientific Python stack as well as select outside tools.

Examples

  • See the examples/ directory.
  • The docs contain plots of example output.

Packages

cmdutils

  • Unix-like command line utilities. Filters (read from stdin/write to stdout) for files.
  • Focus on stream processing and csv files.

parallel

  • Wrappers for Python multiprocessing that add ease of use
  • Memory-friendly multiprocessing

text

  • Stream text from disk to formats used in common ML processes
  • Write processed text to sparse formats
  • Helpers for ML tools (e.g. Vowpal Wabbit, Gensim, etc...)
  • Other general utilities

workflow

  • High-level wrappers that have helped with our workflow and provide additional examples of code use

modeling

  • General ML modeling utilities

Install

Check out the master branch from the rosettarepo. Then, (so long as you have pip).

cd rosetta
make
make test

If you update the source, you can do

make reinstall
make test

The above make targets use pip, so you can of course do pip uninstall at any time.

Getting the source (above) is the preferred method since the code changes often, but if you don't use Git you can download a tagged release (tarball) here. Then

pip install rosetta-X.X.X.tar.gz

Development

Code

You can get the latest sources with

git clone git://github.com/columbia-applied-data-science/rosetta

Contributing

Feel free to contribute a bug report or a request by opening an issue

The preferred method to contribute is to fork and send a pull request. Before doing this, read CONTRIBUTING.md

Dependencies

  • Major dependencies on Pandas and numpy.
  • Minor dependencies on Gensim and statsmodels.
  • Some examples need scikit-learn.
  • Minor dependencies on docx
  • Minor dependencies on the unix utilities pdftotext and catdoc

Testing

From the base repo directory, rosetta/, you can run all tests with

make test

Documentation

Documentation for releases is hosted at pypi. This does NOT auto-update.

History

Rosetta refers to the Rosetta Stone, the ancient Egyptian tablet discovered just over 200 years ago. The tablet contained fragmented text in three different languages and the uncovering of its meaning is considered an essential key to our understanding of Ancient Egyptian civilization. We would like this project to provide individuals the necessary tools to process and unearth insight in the ever-growing volumes of textual data of today.

Comments
  • Fix broken test suite, use protected imports, limit dependencies, or start using requirements.txt

    Fix broken test suite, use protected imports, limit dependencies, or start using requirements.txt

    The use of from rosetta.txt.api import * inside tests has created dependencies that break tests. This import * statement makes it so every test depends on every import statement in the rosetta api. Since MySQLdb doesn't import for me (after 10 minutes of setting it up it still doesn't), and docx has issues that prevents it from working for many people, I can no longer run tests for anything.

    It would be safer to import only what is needed. Also, since things like docx and mysql are problematic and/or difficult to fully install, it might make sense to protect these imports like in this pull request.

    bug 
    opened by langmore 16
  • Error in LDAResults

    Error in LDAResults

    Following the example in https://github.com/columbia-applied-data-science/rosetta/blob/master/examples/vw_helpers.md

    There is an error when I run LDAResults() the following error prints:

    ImportError Traceback (most recent call last) in () 3 lda = LDAResults('C:\Users\Desktop\DATA\LDA\topics.dat', 4 'C:\Users\Desktop\DATA\LDA\predictions.dat', 'C:/Users/Desktop/DATA/LDA' + '/sff_basic.pkl', ----> 5 num_topics=num_topics) 6 lda.print_topics()

    C:\Anaconda\lib\site-packages\rosetta\text\vw_helpers.pyc in init(self, topics_file, predictions_file, sfile_filter, num_topics, alpha, verbose) 230 231 if not isinstance(sfile_filter, text_processors.SFileFilter): --> 232 sfile_filter = text_processors.SFileFilter.load(sfile_filter) 233 234 self.sfile_frame = sfile_filter.to_frame()

    C:\Anaconda\lib\site-packages\rosetta\common_abc.pyc in load(cls, loadfile) 40 """ 41 with smart_open(loadfile, 'rb') as f: ---> 42 return cPickle.load(f)

    ImportError: No module named text_processors

    opened by BrianMiner 12
  • Generic filters2

    Generic filters2

    I think I hit on the major points and recommendations I've gotten (but yell at me if I forgot any!). I changed it so that the filtering is done updating the original dict as much as possible and I made it clear in the documentation that that's the idea. I added back in the _done_check() method's functionality that I previously removed. I also wrote a couple tests.

    So this is probably (at least from my perspective) pretty close to being mergable. Let me know what you guys think!

    opened by ApproximateIdentity 10
  • small improvement on nlp.word_tokenize?

    small improvement on nlp.word_tokenize?

    Hi guys,

    I'm working with word_tokenize, and it doesn't handle acronyms with dots very nicely. For example in the sentence "The U.S. official said", we get 'U' and 'S' as separate tokens. I could imagine we'd replace the the line:

    text = re.sub(r'(?:\s|\[|\]|\(|\)|\{|\}|\.|;|,|:|\n|\r|\?|\!)', r'  ', text)
    

    by:

    text = re.sub(r'(?:\s|\[|\]|\(|\)|\{|\}|;|,|:|\n|\r|\?|\!)', r'  ', text)
    text = text.replace('.', '')
    

    That is, omit the period from the first replacement, and put it in the second line. Any comments? Thank you! David

    opened by davaco 7
  • LDAResults.predict speedup and cmd module rename

    LDAResults.predict speedup and cmd module rename

    cleaned up changes to vw_helpers.py to hide tokenset per Ian's comments

    sped up LDAResults.predict by ~5x. Renamed 'cmd' module to 'cmdutils' to avoid conflict with native python 'cmd'. I don't know how you guys feel about pull requests, but I think these changes would be useful for others. Thanks for letting me use your code. -Louis

    opened by zigeuner 6
  • Question :  Interpretation of prob_token_topic

    Question : Interpretation of prob_token_topic

    Hey guys,

    I was curious about how to interpret output from the prob_token_topic function. I noticed that the probability outcome changes depending on the number of topics being conditioned on.

    The probability of 'kennedy' in topic 0 will be different under the following: lda.prob_token_topic(token='kennedy', c_topic=['topic_0']) lda.prob_token_topic(token='kennedy', c_topic=['topic_0', 'topic_3'])

    Is this as expected? How should these outcomes be interpreted?

    opened by AllardJM 5
  • Add SqliteDBStreamer, converters, and tests

    Add SqliteDBStreamer, converters, and tests

    This is in reference to the following issue: https://github.com/columbia-applied-data-science/rosetta/issues/21

    I wrote a class called SqliteDBStreamer which is intended to mirror the usage of TextFileStreamer except instead of having a folder of text files as the main source of data, the files are kept in a sqlite3 database which makes many standard file operations much faster.

    I personally think this is NOT READY to merge. Each time I look at it, I find little weird things left-over from how I was using the code a month ago (when I basically just hacked it together). But I wanted to throw it up here in case you guys see something really bazaar. I tried to make it as much like TextFileStreamer as possible. In the info_stream, for example, I do not currently have fields like "modification_date". I could add that as a trigger to the sqlitedb file, but I wasn't sure how necessary it was. I also have a few tweaks I need to add that speed this up, but those are minor details aside from the overall setup.

    At this point, I'm basically only treating the sqlitedb as a never-changing object (i.e. add files once and then leave them there). Now this probably doesn't make sense (though I've personally not yet had any other use case), but I'm still thinking the best way to deal with those problems. In it's current state basically all sqlite details are hidden, which is pretty nice at the moment.

    Anyway I imagine myself making many changes to this, but I figured I might as well throw this up here so you guys can give me some feedback if I'm doing something really stupid. Also I have an analysis that I'm doing for declass which could be used as a guide for using these classes, but I need to adapt it to this newer code (though on the surface it looks basically identical to how it's done with TextFileStreamer). Once I do that it could be good documentation.

    opened by ApproximateIdentity 5
  • Separate streaming and database streaming.  Python 3-ify

    Separate streaming and database streaming. Python 3-ify

    This would be a breaking change since it separates text.streamers from text.database_streamers. The difference is that people can use rosetta.text without having to have database dependencies like pymongo and MySQL-python (the latter of which requires a mysql client dependency, which is kind of annoying to carry around if you aren't using mysql). This would partially address people's install issues (e.g. https://github.com/columbia-applied-data-science/rosetta/issues/48)

    The other changes are so that rosetta installs using into python3 environments. There are a couple slightly dirty solutions here, implemented by catching ImportError, but for the most part rosetta is python3 compatible so it might as well work there.

    opened by mdeland 4
  • Lda sums

    Lda sums

    Both parse_lda_topics() and parse_lda_predictions() were painfully slow. Most (~90%) of this was due to unnecessary formatting and re-casting on every iteration.

    Speedups on this branch, using

    time python lda_sums_test.py
    

    in terminal are the following:

    for a 1mil row predictions.dat file (200k unique doc ids from vw lda run 5 passes, 10 topics) current branch running

    import rosetta.text.vw_helpers as ros_vw_h
    
    predictions_file = '/tmp/prediction_large.dat'
    
    num_topics=10
    
    start_line = ros_vw_h.find_start_line_lda_predictions(predictions_file, num_topics)
    pred_iter = ros_vw_h.parse_lda_predictions(predictions_file, num_topics, start_line, normalize=False,
                                                                           get_iter=False)
    

    gets

    real    0m5.092s
    user    0m4.628s
    sys 0m0.465s
    

    vs

    real    10m49.159s
    user    10m46.165s
    sys 0m2.182s
    

    on the master branch. (Note: the fine_start_line() wasn't altered between branches and is relatively fast compared to the parser, i.e. ~1.5s)

    for a 30k row topics.dat file (same lda run as above) current branch running

    import rosetta.text.vw_helpers as ros_vw_h
    
    topics_file = '/tmp/topics_large.dat'
    
    topics_iter = ros_vw_h.parse_lda_topics(topics_file, num_topics,
                                                                      normalize=False, get_iter=False)
    
    

    get

    real    0m1.461s
    user    0m1.219s
    sys 0m0.248s
    

    vs

    real    1m48.375s
    user    1m47.796s
    sys 0m0.505s
    

    on the master branch.

    You can run kernprof to see line by line profile comparisons. The differences overall are quite significant in both time and cpu load....

    Aside: due to a name/indexing bug in pandas 0.16.2+ which is not going to be fixed until 0.17 some tests started failing after a latest update. Probably the best for now is to simply ignore the name check in assert_series_equal in tests; this doesn't alter the validity of the tests in question.

    opened by dkrasner 4
  • Ldaresults

    Ldaresults

    Some cleanup:

    • removed redundant probability data frame in LDAResults * cleaned up and made more uniform
    • removed catdoc from list of unix file converter utils since it's no longer supported and fails on OSX; replaced it with antiword utility
    • test cleanup to reflect above
    opened by dkrasner 4
  • Vwresults

    Vwresults

    Parsing the lda topics file, i.e. --readable_model output of a vw lda run, parsed the entire file into memory ignoring the fact that possible many of the tokens are "garbage," i.e. not included in the set of user provided tokens (hashes). This forced classes like (LDAResults)[https://github.com/columbia-applied-data-science/rosetta/blob/vwresults/rosetta/text/vw_helpers.py#L205] to load more data than necessary into memory. The following PR adds

        * a max token hash number argument to (parse_lda_topics)[https://github.com/columbia-applied-data-science/rosetta/blob/vwresults/rosetta/text/vw_helpers.py#L205]. 
        * checks first for a max token hash number coming from (s_file_filter)[https://github.com/columbia-applied-data-science/rosetta/blob/vwresults/rosetta/text/vw_helpers.py#L239] in LDAResults 
    
    opened by dkrasner 4
  • Document Dependency on NLTK

    Document Dependency on NLTK

    The README file lists out some dependencies, but excludes NLTK. Without NLTK, I cannot import Rosetta, see below. Is there any way to load Rosetta without installing NLTK (as I really just wanted to look at the parallel API)? If not, it should be documented.

    Thanks!

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-4-03c43361a895> in <module>()
    ----> 1 import rosetta.parallel
    
    /usr/local/lib/python3.5/dist-packages/rosetta/__init__.py in <module>()
    ----> 1 from rosetta.text.api import *
    
    /usr/local/lib/python3.5/dist-packages/rosetta/text/api.py in <module>()
    ----> 1 from rosetta.text.streamers import TextFileStreamer
          2 
          3 from rosetta.text.text_processors import \
          4     TokenizerBasic, MakeTokenizer, SFileFilter, VWFormatter
          5 
    
    /usr/local/lib/python3.5/dist-packages/rosetta/text/streamers.py in <module>()
         15 from .. import common
         16 from ..common import lazyprop, smart_open, DocIDError
    ---> 17 from . import filefilter, text_processors
         18 
         19 
    
    /usr/local/lib/python3.5/dist-packages/rosetta/text/text_processors.py in <module>()
         22 import math
         23 
    ---> 24 import nltk
         25 import numpy as np
         26 import pandas as pd
    
    ImportError: No module named 'nltk'
    
    opened by jquacinella 0
  • "Killed" error on Step3 - LDA in VW using Rosetta

    I am trying to run LDA in VW using Rosetta. It seems to be working fine for smaller number of topics but as soon as I go to 50 or 100, step 3: read the results with LDAResults fails => I get a "Killed" error. I don't think this is a memory problem because I am running my code on a robust machine with 50GB of RAM. What's going on? Is this a VW or Rosetta issue? How can I solve it? Thanks!

    Once I have doc_tokens.vw, this is what I am running in order: Step 1: `from rosetta.text.text_processors import SFileFilter, VWFormatter sff = SFileFilter(VWFormatter()) sff.load_sfile('doc_tokens.vw')

    df = sff.to_frame() df.head() df.describe()

    sff.filter_extremes(doc_freq_min=500, doc_fraction_max=0.8) sff.compactify() sff.save('sff_file.pkl')`

    Step 2: rm -f *cache vw --lda 100 --lda_alpha 0.1 --lda_rho 0.1 --cache_file ddrs.cache --passes 10 -p prediction.dat --readable_model topics.dat --bit_precision 16 doc_tokens_filtered.vw

    Step 3: from rosetta.text.vw_helpers import LDAResults num_topics = 5 lda = LDAResults('topics.dat', 'prediction.dat', 'sff_file.pkl', num_topics=num_topics) lda.print_topics()

    opened by bhaskar2khaneja 0
  • Cannot generate sff_file unlabelled data set file

    Cannot generate sff_file unlabelled data set file

    My vw data is of this format

    | this is great
    | I try to learn English everyday
    [...]
    

    saved as data.vw I try to run this code:

    from rosetta.text.vw_helpers import LDAResults
    from rosetta.text.text_processors import SFileFilter, VWFormatter
    
    def generate_filefilter():
        sff = SFileFilter(VWFormatter())
        sff.load_sfile('data.lda.vw')
    
        df = sff.to_frame()
        df.head()
        df.describe()
    
        sff.filter_extremes(doc_freq_min=5, doc_fraction_max=0.8)
        sff.compactify()
        sff.save('sff_file.pkl')
    
    if __name__ == '__main__':
        generate_filefilter()
    

    And the error is:

    Traceback (most recent call last):
      File "/<home>/.venv/lib/python2.7/site-packages/rosetta/text/text_processors.py", line 380, in _parse_preamble
        if preamble[-1] != ' ':
    IndexError: string index out of range
    
    opened by binhngoc17 1
  • ImportErrors

    ImportErrors

    I installed rosetta, and tried the run examples/plot_classifiers.py - got:

    /usr/local/lib/python3.4/site-packages/rosetta/text/streamers.py in <module>()
         10 import os
         11 from scipy import sparse
    ---> 12 import MySQLdb
         13 import MySQLdb.cursors
         14 import pymongo
    
    ImportError: No module named 'MySQLdb'
    

    ^ This isn't listed as a dependency on the readme. Should it be ? Futhermore, it wasn't installed when I used pip to install rosetta.

    >>> import rosetta
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "rosetta/__init__.py", line 1, in <module>
        from rosetta.text.api import *
      File "rosetta/text/api.py", line 1, in <module>
        from rosetta.text.streamers import TextFileStreamer
      File "rosetta/text/streamers.py", line 20, in <module>
        import pymongo
    ImportError: No module named pymongo
    

    Pymongo too.

    >>> import rosetta
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/Users/aljohnson/code/rosetta/rosetta/__init__.py", line 1, in <module>
        from rosetta.text.api import *
      File "/Users/aljohnson/code/rosetta/rosetta/text/api.py", line 1, in <module>
        from rosetta.text.streamers import TextFileStreamer
      File "/Users/aljohnson/code/rosetta/rosetta/text/streamers.py", line 22, in <module>
        from rosetta.parallel.parallel_easy import imap_easy, parallel_apply
      File "/Users/aljohnson/code/rosetta/rosetta/parallel/parallel_easy.py", line 13, in <module>
        import cPickle
    ImportError: No module named 'cPickle'
    

    cPickle too...

    The weird thing... is that I'm seeing all these listed in the requirements.txt. So at this point I'm like wtf I'm just going to use virtual env.

    [email protected] :
    ~/code/rosetta
    $ virtualenv -p `which python` rosetta_env/ 
    Running virtualenv with interpreter /usr/bin/python
    New python executable in rosetta_env/bin/python
    Installing setuptools, pip, wheel...done.
    [email protected] :
    ~/code/rosetta
    $ source rosetta_env/bin/activate
    (rosetta_env)
    [email protected] :
    ~/code/rosetta
    $ ls
    CONTRIBUTING.md  MANIFEST.in      README_data.md   examples         notebooks        requirements.txt rosetta_env      setup.py
    LICENSE.txt      README.md        docs             makefile         notes            rosetta          scripts
    (rosetta_env)
    [email protected] :
    ~/code/rosetta
    $ pip install -r requirements.txt 
    /Users/aljohnson/code/rosetta/rosetta_env/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/util/ssl_.py:90: InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.
      InsecurePlatformWarning
    Collecting pandas (from -r requirements.txt (line 1))
    /Users/aljohnson/code/rosetta/rosetta_env/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/util/ssl_.py:90: InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.
      InsecurePlatformWarning
      Downloading pandas-0.16.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.3MB)
        100% |████████████████████████████████| 7.3MB 77kB/s 
    Collecting scikit-learn (from -r requirements.txt (line 2))
      Downloading scikit_learn-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.4MB)
        100% |████████████████████████████████| 5.4MB 106kB/s 
    Collecting statsmodels (from -r requirements.txt (line 3))
      Downloading statsmodels-0.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.0MB)
        100% |████████████████████████████████| 4.0MB 73kB/s 
    Collecting gensim (from -r requirements.txt (line 4))
      Using cached gensim-0.12.1.tar.gz
    Collecting docx (from -r requirements.txt (line 5))
      Using cached docx-0.2.4.tar.gz
    Collecting pyth (from -r requirements.txt (line 6))
      Using cached pyth-0.6.0.tar.gz
    Collecting pymongo (from -r requirements.txt (line 7))
    /Users/aljohnson/code/rosetta/rosetta_env/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/util/ssl_.py:90: InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.
      InsecurePlatformWarning
      Downloading pymongo-3.0.3-cp27-none-macosx_10_8_intel.whl (239kB)
        100% |████████████████████████████████| 241kB 2.0MB/s 
    Collecting MySQL-python (from -r requirements.txt (line 8))
      Using cached MySQL-python-1.2.5.zip
        Complete output from command python setup.py egg_info:
        sh: mysql_config: command not found
        Traceback (most recent call last):
          File "<string>", line 20, in <module>
          File "/private/var/folders/vj/_mcyrpkn30d2tph7c56yvzxxf5_jlv/T/pip-build-ylIxmf/MySQL-python/setup.py", line 17, in <module>
            metadata, options = get_config()
          File "setup_posix.py", line 43, in get_config
            libs = mysql_config("libs_r")
          File "setup_posix.py", line 25, in mysql_config
            raise EnvironmentError("%s not found" % (mysql_config.path,))
        EnvironmentError: mysql_config not found
    
        ----------------------------------------
    Command "python setup.py egg_info" failed with error code 1 in /private/var/folders/vj/_mcyrpkn30d2tph7c56yvzxxf5_jlv/T/pip-build-ylIxmf/MySQL-python
    (rosetta_env)
    

    At this point I'm not sure what the hell is going on. Its probably my fault in the end but, essentially, this is seeming a lot harder than it should be. Just to import rosetta.

    opened by metasyn 1
  • Add token scores to BaseStreamer.to_scipysparse()

    Add token scores to BaseStreamer.to_scipysparse()

    When the token_col dictionary is updated it would be good to also update an overall count for each token, to later use for feature selection/filtering etc.

    Perhaps the self.token_col_map should be self.token_col_count_map or there should be two separate attributes self.token_col_map and self.token_count_map - thoughts?

    opened by dkrasner 0
Releases(v0.3.0)
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022