JaQuAD: Japanese Question Answering Dataset

Related tags

Text Data & NLPJaQuAD
Overview

JaQuAD: Japanese Question Answering Dataset

Overview

Japanese Question Answering Dataset (JaQuAD), released in 2022, is a human-annotated dataset created for Japanese Machine Reading Comprehension. JaQuAD is developed to provide a SQuAD-like QA dataset in Japanese. JaQuAD contains 39,696 question-answer pairs. Questions and answers are manually curated by human annotators. Contexts are collected from Japanese Wikipedia articles.

For more information on how the dataset was created, refer to our paper, JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension.

Data

JaQuAD consists of three sets: train, validation, and test. They were created from disjoint sets of Wikipedia articles. The following table shows statistics for each set:

Set Number of Articles Number of Contexts Number of Questions
Train 691 9713 31748
Validation 101 1431 3939
Test 109 1479 4009

You can also download our dataset here. (The test set is not publicly released yet.)

from datasets import load_dataset
jaquad_data = load_dataset('SkelterLabsInc/JaQuAD')

Baseline

We also provide a baseline model for JaQuAD for comparison. We created this model by fine-tuning a publicly available Japanese BERT model on JaQuAD. You can see the performance of the baseline model in the table below.

For more information on the model's creation, refer to JaQuAD.ipynb.

Pre-trained LM Dev F1 Dev EM Test F1 Test EM
BERT-Japanese 77.35 61.01 78.92 63.38

You can download the baseline model here.

Usage

from transformers import AutoModelForQuestionAnswering, AutoTokenizer

question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?'
context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。'

model = AutoModelForQuestionAnswering.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')
tokenizer = AutoTokenizer.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')

inputs = tokenizer(
    question, context, add_special_tokens=True, return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0]
outputs = model(**inputs)
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits

# Get the most likely start of the answer with the argmax of the score.
answer_start = torch.argmax(answer_start_scores)
# Get the most likely end of the answer with the argmax of the score.
# 1 is added to `answer_end` because the index of the score is inclusive.
answer_end = torch.argmax(answer_end_scores) + 1

answer = tokenizer.convert_tokens_to_string(
    tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
# answer = 'スコットランド'

Limitations

This dataset is not yet complete. The social biases of this dataset have not yet been investigated.

If you find any errors in JaQuAD, please contact [email protected].

Reference

If you use our dataset or code, please cite our paper:

@misc{so2022jaquad,
      title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}},
      author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho},
      year={2022},
      eprint={2202.01764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

LICENSE

The JaQuAD dataset is licensed under the [CC BY-SA 3.0] (https://creativecommons.org/licenses/by-sa/3.0/) license.

Have Questions?

Ask us at [email protected].

Owner
SkelterLabs
An artificial intelligence technology company developing innovative machine intelligence technology that is designed to enhance the quality of the users’ daily.
SkelterLabs
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022