JaQuAD: Japanese Question Answering Dataset

Related tags

Text Data & NLPJaQuAD
Overview

JaQuAD: Japanese Question Answering Dataset

Overview

Japanese Question Answering Dataset (JaQuAD), released in 2022, is a human-annotated dataset created for Japanese Machine Reading Comprehension. JaQuAD is developed to provide a SQuAD-like QA dataset in Japanese. JaQuAD contains 39,696 question-answer pairs. Questions and answers are manually curated by human annotators. Contexts are collected from Japanese Wikipedia articles.

For more information on how the dataset was created, refer to our paper, JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension.

Data

JaQuAD consists of three sets: train, validation, and test. They were created from disjoint sets of Wikipedia articles. The following table shows statistics for each set:

Set Number of Articles Number of Contexts Number of Questions
Train 691 9713 31748
Validation 101 1431 3939
Test 109 1479 4009

You can also download our dataset here. (The test set is not publicly released yet.)

from datasets import load_dataset
jaquad_data = load_dataset('SkelterLabsInc/JaQuAD')

Baseline

We also provide a baseline model for JaQuAD for comparison. We created this model by fine-tuning a publicly available Japanese BERT model on JaQuAD. You can see the performance of the baseline model in the table below.

For more information on the model's creation, refer to JaQuAD.ipynb.

Pre-trained LM Dev F1 Dev EM Test F1 Test EM
BERT-Japanese 77.35 61.01 78.92 63.38

You can download the baseline model here.

Usage

from transformers import AutoModelForQuestionAnswering, AutoTokenizer

question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?'
context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。'

model = AutoModelForQuestionAnswering.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')
tokenizer = AutoTokenizer.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')

inputs = tokenizer(
    question, context, add_special_tokens=True, return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0]
outputs = model(**inputs)
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits

# Get the most likely start of the answer with the argmax of the score.
answer_start = torch.argmax(answer_start_scores)
# Get the most likely end of the answer with the argmax of the score.
# 1 is added to `answer_end` because the index of the score is inclusive.
answer_end = torch.argmax(answer_end_scores) + 1

answer = tokenizer.convert_tokens_to_string(
    tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
# answer = 'スコットランド'

Limitations

This dataset is not yet complete. The social biases of this dataset have not yet been investigated.

If you find any errors in JaQuAD, please contact [email protected].

Reference

If you use our dataset or code, please cite our paper:

@misc{so2022jaquad,
      title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}},
      author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho},
      year={2022},
      eprint={2202.01764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

LICENSE

The JaQuAD dataset is licensed under the [CC BY-SA 3.0] (https://creativecommons.org/licenses/by-sa/3.0/) license.

Have Questions?

Ask us at [email protected].

Owner
SkelterLabs
An artificial intelligence technology company developing innovative machine intelligence technology that is designed to enhance the quality of the users’ daily.
SkelterLabs
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022