Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Overview

🌳 Fingerprinting Fine-tuned Language Models in the wild

This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Clone the repo

git clone https://github.com/LCS2-IIITD/ACL-FFLM.git
pip3 install -r requirements.txt 

Dataset

The dataset includes both organic and synthetic text.

  • Synthetic -

    Collected from posts of r/SubSimulatorGPT2. Each user on the subreddit is a GPT2 small (345 MB) bot that is fine-tuned on 500k posts and comments from a particular subreddit (e.g., r/askmen, r/askreddit,r/askwomen). The bots generate posts on r/SubSimulatorGPT2, starting off with the main post followed by comments (and replies) from other bots. The bots also interact with each other by using the synthetic text in the preceding comment/reply as their prompt. In total, the sub-reddit contains 401,214 comments posted between June 2019 and January 2020 by 108 fine-tuned GPT2 LMs (or class).

  • Organic -

    Collected from comments of 108 subreddits the GPT2 bots have been fine-tuned upon. We randomly collected about 2000 comments between the dates of June 2019 - Jan 2020.

The complete dataset is available here. Download the dataset as follows -

  1. Download the 2 folders organic and synthetic, containing the comments from individual classes.
  2. Store them in the data folder in the following format.
data
├── organic
├── synthetic
└── authors.csv

Note -
For the below TL;DR run you also need to download dataset.json and dataset.pkl files which contain pre-processed data.
Organize them in the dataset/synthetic folder as follows -

dataset
├── organic
├── synthetic
  ├── splits (Folder already present)
    ├── 6 (Folder already present)
      └── 108_800_100_200_dataset.json (File already present)
  ├── dataset.json (to be added via drive link)
  └── dataset.pkl (to be added via drive link)
└── authors.csv (File already present)

108_800_100_200_dataset.json is a custom dataset which contains the comment ID's, the labels and their separation into train, test and validation splits.
Upon running the models, the comments for each split are fetched from the dataset.json using the comment ID's in the 108_800_100_200_dataset.json file .

Running the code

TL;DR

You can skip the pre-processing and the Create Splits if you want to run the code on some custom datasets available in the dataset/synthetic....splits folder. Make sure to follow the instructions mentioned in the Note of the Dataset section for the setting up the dataset folders.

Pre-process the dataset

First, we pre-process the complete dataset using the data present in the folder create-splits. Select the type of data (organic/synthetic) you want to pre-process using the parameter synthetic in the file. By deafult the parameter is set for synthetic data i.e True. This would create a pre-processed dataset.json and dataset.pkl files in the dataset/[organic OR synthetic] folder.

Create Train, Test and Validation Splits

We create splits of train, test and validation data. The parameters such as min length of sentences (default 6), lowercase sentences, size of train (max and default 800/class), validation (max and default 100/class) and test (max and default 200/class),number of classes (max and default 108) can be set internally in the create_splits.py in the splits folder under the commented PARAMETERS Section.

cd create-splits.py
python3 create_splits.py

This creates a folder in the folder dataset/synthetic/splits/[min_len_of_sentence/min_nf_tokens = 6]/. The train, validation and test datasets are all stored in the same file with the filename [#CLASSES]_[#TRAIN_SET_SIZE]_[#VAL_SET_SIZE]_[#TEST_SET_SIZE]_dataset.json like 108_800_100_200_dataset.json.

Running the model

Now fix the same parameters in the seq_classification.py file. To train and test the best model (Fine-tuned GPT2/ RoBERTa) -

cd models/generate-embed/ft/
python3 seq_classification.py 

A results folder will be generated which will contain the results of each epoch.

Note -
For the other models - pretrained and writeprints, first generate the embeddings using the files in the folders models/generate-embed/[pre-trained or writeprints]. The generated embeddings are stored in the results/generate-embed folder. Then, use the script in the models/classifiers/[pre-trained or writeprints] to train sklearn classifiers on generated embeddings. The final results will be in the results/classifiers/[pre-trained or writeprints] folder.

👪 Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. For any detailed clarifications/issues, please email to nirav17072[at]iiitd[dot]ac[dot]in .

⚖️ License

MIT

Owner
LCS2-IIITDelhi
Laboratory for Computation Social Systems (LCS2) is a research group led by Dr. Tanmoy Chakraborty and Dr. Md. Shad Akhtar at IIIT-D
LCS2-IIITDelhi
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021