Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Overview

🌳 Fingerprinting Fine-tuned Language Models in the wild

This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Clone the repo

git clone https://github.com/LCS2-IIITD/ACL-FFLM.git
pip3 install -r requirements.txt 

Dataset

The dataset includes both organic and synthetic text.

  • Synthetic -

    Collected from posts of r/SubSimulatorGPT2. Each user on the subreddit is a GPT2 small (345 MB) bot that is fine-tuned on 500k posts and comments from a particular subreddit (e.g., r/askmen, r/askreddit,r/askwomen). The bots generate posts on r/SubSimulatorGPT2, starting off with the main post followed by comments (and replies) from other bots. The bots also interact with each other by using the synthetic text in the preceding comment/reply as their prompt. In total, the sub-reddit contains 401,214 comments posted between June 2019 and January 2020 by 108 fine-tuned GPT2 LMs (or class).

  • Organic -

    Collected from comments of 108 subreddits the GPT2 bots have been fine-tuned upon. We randomly collected about 2000 comments between the dates of June 2019 - Jan 2020.

The complete dataset is available here. Download the dataset as follows -

  1. Download the 2 folders organic and synthetic, containing the comments from individual classes.
  2. Store them in the data folder in the following format.
data
├── organic
├── synthetic
└── authors.csv

Note -
For the below TL;DR run you also need to download dataset.json and dataset.pkl files which contain pre-processed data.
Organize them in the dataset/synthetic folder as follows -

dataset
├── organic
├── synthetic
  ├── splits (Folder already present)
    ├── 6 (Folder already present)
      └── 108_800_100_200_dataset.json (File already present)
  ├── dataset.json (to be added via drive link)
  └── dataset.pkl (to be added via drive link)
└── authors.csv (File already present)

108_800_100_200_dataset.json is a custom dataset which contains the comment ID's, the labels and their separation into train, test and validation splits.
Upon running the models, the comments for each split are fetched from the dataset.json using the comment ID's in the 108_800_100_200_dataset.json file .

Running the code

TL;DR

You can skip the pre-processing and the Create Splits if you want to run the code on some custom datasets available in the dataset/synthetic....splits folder. Make sure to follow the instructions mentioned in the Note of the Dataset section for the setting up the dataset folders.

Pre-process the dataset

First, we pre-process the complete dataset using the data present in the folder create-splits. Select the type of data (organic/synthetic) you want to pre-process using the parameter synthetic in the file. By deafult the parameter is set for synthetic data i.e True. This would create a pre-processed dataset.json and dataset.pkl files in the dataset/[organic OR synthetic] folder.

Create Train, Test and Validation Splits

We create splits of train, test and validation data. The parameters such as min length of sentences (default 6), lowercase sentences, size of train (max and default 800/class), validation (max and default 100/class) and test (max and default 200/class),number of classes (max and default 108) can be set internally in the create_splits.py in the splits folder under the commented PARAMETERS Section.

cd create-splits.py
python3 create_splits.py

This creates a folder in the folder dataset/synthetic/splits/[min_len_of_sentence/min_nf_tokens = 6]/. The train, validation and test datasets are all stored in the same file with the filename [#CLASSES]_[#TRAIN_SET_SIZE]_[#VAL_SET_SIZE]_[#TEST_SET_SIZE]_dataset.json like 108_800_100_200_dataset.json.

Running the model

Now fix the same parameters in the seq_classification.py file. To train and test the best model (Fine-tuned GPT2/ RoBERTa) -

cd models/generate-embed/ft/
python3 seq_classification.py 

A results folder will be generated which will contain the results of each epoch.

Note -
For the other models - pretrained and writeprints, first generate the embeddings using the files in the folders models/generate-embed/[pre-trained or writeprints]. The generated embeddings are stored in the results/generate-embed folder. Then, use the script in the models/classifiers/[pre-trained or writeprints] to train sklearn classifiers on generated embeddings. The final results will be in the results/classifiers/[pre-trained or writeprints] folder.

👪 Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. For any detailed clarifications/issues, please email to nirav17072[at]iiitd[dot]ac[dot]in .

⚖️ License

MIT

Owner
LCS2-IIITDelhi
Laboratory for Computation Social Systems (LCS2) is a research group led by Dr. Tanmoy Chakraborty and Dr. Md. Shad Akhtar at IIIT-D
LCS2-IIITDelhi
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023