WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Overview

WIT : Wikipedia-based Image Text Dataset

Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal machine learning models.

Key Advantages

A few unique advantages of WIT:

  • The largest multimodal dataset (publicly available at the time of this writing) by the number of image-text examples.
  • A massively multilingual dataset (first of its kind) with coverage for over 100+ languages.
  • A collection of diverse set of concepts and real world entities.
  • Brings forth challenging real-world test sets.

You can learn more about WIT Dataset from our arXiv paper.

Latest Updates

2021-04-14: Happy to share the good news that our paper got accepted at SIGIR Conference. From ACM site, you can find our paper, slides and presentation.

2021-09-14: WIT Image-Text Competition is live on Kaggle. Our collaborators from Wikimedia Research blogged about this and they have made available the raw pixels and resnet50 embeddings for the images in this set.

WIT Example

Wikipedia Page

For example, let's take the Wikipedia page for Half Dome, Yosemite in CA.

WIT Wikipedia Half Dome Image

From the Wikipedia page for Half Dome : Photo by DAVID ILIFF. License: CC BY-SA 3.0

Wikipedia Page with Annotations of what we can extract

From this page, we highlight the various key pieces of data that we can extract - images, their respective text snippets and some contextual metadata.

WIT Half Dome Page with Annotations

By extracting and filering these carefully, we get a clean high quality image-text example that can be used in multimodal modeling.

Motivation

Multimodal visio-linguistic models rely on a rich dataset to help them learn to model the relationship between images and texts. Having large image-text datasets can significantly improve performance, as shown by recent works. Furthermore the lack of language coverage in existing datasets (which are mostly only in English) also impedes research in the multilingual multimodal space – we consider this a lost opportunity given the potential shown in leveraging images (as a language-agnostic medium) to help improve our multilingual textual understanding.

To address these challenges and advance research on multilingual, multimodal learning we created the Wikipedia-based Image Text (WIT) Dataset. WIT is created by extracting multiple different texts associated with an image (e.g., as shown in the above image) from Wikipedia articles and Wikimedia image links. This was accompanied by rigorous filtering to only retain high quality image-text sets.

The resulting dataset contains over 37.6 million image-text sets – making WIT the largest multimodal dataset (publicly available at the time of this writing) with unparalleled multilingual coverage – with 12K+ examples in each of 108 languages (53 languages have 100K+ image-text pairs).

WIT: Dataset Numbers

Type Train Val Test Total / Unique
Rows / Tuples 37.13M 261.8K 210.7K 37.6M
Unique Images 11.4M 58K 57K 11.5M
Ref. Text 16.9M 150K 104K 17.2M / 16.7M
Attr. Text 34.8M 193K 200K 35.2M / 10.9M
Alt Text 5.3M 29K 29K 5.4M / 5.3M
Context Texts - - - 119.8M

WIT: Image-Text Stats by Language

Image-Text # Lang Uniq. Images # Lang
total > 1M 9 images > 1M 6
total > 500K 10 images > 500K 12
total > 100K 36 images > 100K 35
total > 50K 15 images > 50K 17
total > 14K 38 images > 13K 38

Get WIT

We believe that such a powerful diverse dataset will aid researchers in building better multimodal multilingual models and in identifying better learning and representation techniques leading to improvement of Machine Learning models in real-world tasks over visio-linguistic data.

WIT Dataset is now available for download. Please check the data page.

Citing WIT

If you use the WIT dataset, you can cite our work as follows.

@article{srinivasan2021wit,
  title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning},
  author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
  journal={arXiv preprint arXiv:2103.01913},
  year={2021}
}

License

This data is available under the Creative Commons Attribution-ShareAlike 3.0 Unported license.

Projects using WIT

For information regarding MURAL (Multimodal, Multitask Retrieval Across Languages) paper accepted at EMNLP 2021.

Contact

For any questions, please contact [email protected].

If WIT dataset is useful to you, please do write to us about it. Be it a blog post, a research project or a paper, we are delighted to learn about it.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022