Sequence Modeling with Structured State Spaces

Overview

Structured State Spaces for Sequence Modeling

This repository provides implementations and experiments for the following papers.

S4

Structured State Spaces

Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu, Karan Goel, Christopher Ré
Paper: https://arxiv.org/abs/2111.00396

LSSL

Linear State Space Layer

Combining Recurrent, Convolutional, and Continuous-time Models with the Linear State Space Layer
Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2110.13985

HiPPO

HiPPO Framework

HiPPO: Recurrent Memory with Optimal Polynomial Projections
Albert Gu*, Tri Dao*, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2008.07669

Setup

Requirements

This repository requires Python 3.8+ and Pytorch 1.9+. Other packages are listed in requirements.txt.

Data

Datasets and Dataloaders

All logic for creating and loading datasets is in src/dataloaders. This folders includes many old and experimental datasets. The datasets that we consider core are located in src/dataloaders/datasets.py.

The raw data should be organized as follows. The data path can be configured by the environment variable DATA_PATH, or defaults to ./data by default, where . is the top level directory of this repository (e.g. 'state-spaces').

Data

External datasets include Long Range Arena (LRA), which can be downloaded from their GitHub page.

These external datasets should be organized as follows:

DATA_PATH/
  pathfinder/
    pathfinder32/
    pathfinder64/
    pathfinder128/
    pathfinder256/
  aan/
  listops/

Fine-grained control over the data directory is allowed, e.g. if the LRA ListOps files are located in /home/lra/listops-1000/, you can pass in +dataset.data_dir=/home/lra/listops-1000 on the command line

Cauchy Kernel

A core operation of S4 is the "Cauchy kernel" described in the paper. The implementation of this requires one of two methods:

Custom CUDA Kernel

This version is faster but requires manual compilation on each machine. Run python setup.py install from the directory extensions/cauchy/.

Pykeops

This version is provided by the pykeops library. Installation usually works out of the box with pip install pykeops cmake which are provided in the requirements file.

Note that running in a Colab requires installing a different pip package; instructions can be found in the pykeops documentation.

S4 Experiments

This section describes how to use the latest S4 model and reproduce experiments immediately. More detailed descriptions of the infrastructure are in the subsequent sections.

Structured State Space (S4)

The S4 module is found at src/models/sequence/ss/s4.py.

For users who would like to import a single file that has the self-contained S4 layer, a standalone version can be found at src/models/sequence/ss/standalone/s4.py.

Testing

For testing, we frequently use synthetic datasets or the Permuted MNIST dataset. This can be run with python -m train wandb=null pipeline=mnist model=s4, which should get to around 90% after 1 epoch which takes 2-4 minutes depending on GPU.

Long Range Arena (LRA)

python -m train wandb=null experiment=s4-lra-listops
python -m train wandb=null experiment=s4-lra-imdb
python -m train wandb=null experiment=s4-lra-cifar
python -m train wandb=null experiment=s4-lra-aan
python -m train wandb=null experiment=s4-lra-pathfinder
python -m train wandb=null experiment=s4-lra-pathx

Note that these experiments may take different amounts of time to train. IMDB should take just 1-2 hours, while Path-X will take several epochs to take off and take over a day to train to completion.

CIFAR-10

python -m train wandb=null experiment=s4-cifar

The above command line reproduces our best sequential CIFAR model. Decreasing the model size should yield close results, e.g. halving the hidden dimension with model.d_model=512.

Speech Commands

The Speech Commands dataset we compare against is a modified smaller 10-way classification task.

python -m train wandb=null experiment=s4-sc

To use the original version with the full 35 classes, pass in dataset.all_classes=true

Training

The core training infrastructure of this repository is based on Pytorch-Lightning with a configuration scheme based on Hydra. The structure of this integration largely follows the Lightning+Hydra integration template described in https://github.com/ashleve/lightning-hydra-template.

The main experiment entrypoint is train.py and configs are found in configs/. In brief, the main config is found at configs/config.yaml, which is combined with other sets of configs that can be passed on the command line, to define an overall YAML config. Most config groups define one single Python object (e.g. a PyTorch nn.Module). The end-to-end training pipeline can broken down into the following rough groups, where group XX is found under configs/XX/:

model: the sequence-to-sequence model backbone (e.g. a src.models.sequence.SequenceModel)
dataset: the raw dataset (data/target pairs) (e.g. a pytorch Dataset)
loader: how the data is loaded (e.g. a pytorch DataLoader)
encoder: defines a Module that interfaces between data and model backbone
decoder: defines a Module that interfaces between model backbone and targets
task: specifies loss and metrics

Default combinations of dataset+loader+encoder+decoder+task are further consolidated into groups called pipelines.

A run can be performed by passing in a pipeline config, model config, and any additional arguments modifying the default configurations. A simple example experiment is

python -m train pipeline=mnist dataset.permute=True model=s4 model.n_layers=3 model.d_model=128 model.norm=batch model.prenorm=True wandb=null

This uses the permuted sequential MNIST task and uses an s4 model with a specified number of layers, backbone dimension, and normalization type.

Hydra

It is recommended to read the Hydra documentation to fully understand the configuration framework. For help launching specific experiments, please file an Issue.

Registries

This codebase uses a modification of the hydra instantiate utility that provides shorthand names of different classes, for convenience in configuration and logging. The mapping from shorthand to full path can be found in src/utils/registry.py.

WandB

Logging with WandB is built into this repository. In order to use this, simply set your WANDB_API_KEY environment variable, and change the wandb.project attribute of configs/config.yaml (or pass it on the command line python -m train .... wandb.project=s4).

Set wandb=null to turn off WandB logging.

Models

This repository provides a modular and flexible implementation of sequence models at large.

SequenceModule

SequenceModule src/models/sequence/base.py is the abstract interface that all sequence models adhere to. In this codebase, sequence models are defined as a sequence-to-sequence map of shape (batch size, sequence length, input dimension) to (batch size, sequence length, output dimension).

The SequenceModule comes with other methods such as step which is meant for autoregressive settings, and logic to carry optional hidden states (for stateful models such as RNNs or S4).

SequenceModel

SequenceModel src/models/sequence/model.py is the main backbone with configurable options for residual function, normalization placement and type, etc. SequenceModel accepts a black box config for a layer. Compatible layers are SequenceModules (i.e. composable sequence transformations) found under src/models/sequence/.

S4

This is the main model of this repository. See instructions in Getting Started.

LSSL

The LSSL is an old version of S4. It is currently not recommended for use, but the model can be found at src/models/sequence/ss/lssl.py.

It can be run with model/layer=lssl or model/layer=lssl model.layer.learn=0 for the LSSL-fixed model which does not train A, B, or dt.

HiPPO

HiPPO is the mathematical framework upon which the papers HiPPO, LSSL, and S4 are built on. The logic for HiPPO operators is found under src/models/hippo/.

HiPPO-RNN cells from the original [https://arxiv.org/abs/2008.07669] can be found under the RNN cells

RNNs

This codebase contains a flexible and modular implementation of many RNN cells.

Some examples include model=rnn/hippo-legs and model=rnn/hippo-legt for HiPPO variants from the original paper, or model=rnn/gru for a GRU reimplementation, etc.

An exception is model=lstm to use the PyTorch LSTM.

Example command (reproducing the Permuted MNIST number from the HiPPO paper, which was SotA at the time):

python train.py pipeline=mnist model=rnn/hippo-legs model.cell_args.hidden_size=512 train.epochs=50 train.batch_size=100 train.lr=0.001

Baselines

Other sequence models are easily incorporated into this repository, and several other baselines have been ported.

These include CNNs such as the WaveGAN Discriminator and CKConv and continuous-time/RNN models such as UnICORNN and LipschitzRNN.

python -m train dataset=mnist model={ckconv,unicornn}

Overall Repository Structure

configs/         config files for model, data pipeline, training loop, etc.
data/            default location of raw data
extensions/      CUDA extension for Cauchy kernel
src/             main source code for models, datasets, etc.
train.py         main entrypoint

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@article{gu2021efficiently,
  title={Efficiently Modeling Long Sequences with Structured State Spaces},
  author={Gu, Albert and Goel, Karan and R{\'e}, Christopher},
  journal={arXiv preprint arXiv:2111.00396},
  year={2021}
}

@article{gu2021combining,
  title={Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers},
  author={Gu, Albert and Johnson, Isys and Goel, Karan and Saab, Khaled and Dao, Tri and Rudra, Atri and R{\'e}, Christopher},
  journal={Advances in neural information processing systems},
  volume={34},
  year={2021}
}

@article{gu2020hippo,
  title={HiPPO: Recurrent Memory with Optimal Polynomial Projections},
  author={Gu, Albert and Dao, Tri and Ermon, Stefano and Rudra, Atri and Re, Christopher},
  journal={Advances in neural information processing systems},
  volume={33},
  year={2020}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022