A method for cleaning and classifying text using transformers.

Overview

NLP Translation and Classification

The repository contains a method for classifying and cleaning text using NLP transformers.

Overview

The input data are web-scraped product names gathered from various e-shops. The products are either monitors or printers. Each product in the dataset has a scraped name containing information about the product brand, and product model name, but also unwanted noise - irrelevant information about the item. Additionally, only some records are relevant, meaning that they belong to the correct category: monitor or printer, while other records belong to unwanted categories like accessories or TVs.

The goal of the tasks is to preprocess web-scraped data by removing noisy records and cleaning product names. Preliminary experiments showed that classic machine learning methods like tf-idf vectorization and classification struggled to achieve good results. Instead NLP transformers were employed:

  • First, DistilBERT was utilized for removing irrelevant records. The available data are monitors with annotated labels where the records are classified into three classes: "Monitor", "TV", and "Noise".
  • After, T5 was applied for cleaning product names by translating scraped name into clean name containing only product brand and product model name. For instance, for the given input "monitor led aoc 24g2e 24" ips 1080 ..." the desired output is "aoc | 24g2e". The available data are monitors and printers with annotated targets.

The datasets are split into training, validation and test sets without overlapping records.

The results and details about training and evaluation procedure can be found in the Jupyter Notebooks, see Content section below.

Content

The repository contains Jupyter Notebooks for training and evaluating NNs:

  • 01_data_exploration.ipynb - The notebook contains an exploration of the datasets for sequence classification and translation. It includes visualization of distributions of targets, and overview of available metadata.
  • 02a_classification_fine_tuning.ipynb - The notebook fine-tunes a DistilBERT classifier using training and validation sets, and saves the trained checkpoint.
  • 02b_classification_evaluation.ipynb - The notebook evaluates classification scores on the test set. It includes: a classification report with precision, recall and F1 scores; and a confusion matrix.
  • 03a_translation_fine_tuning.ipynb - The notebook fine-tunes a T5 translation network using training and validation sets, and saves the trained checkpoint.
  • 03b_translation_evaluation.ipynb - The notebook evaluates translation metrics on the test set. The metrics are: Text Accuracy (exact match of target and predicted sequences); Levenshtein Score (normalized reversed Levenshtein Distance where 1 is the best and 0 is the worst); and Jaccard Index.
  • 04_benchmarking.ipynb - The notebook evaluates GPU memory and time needed for running inference on DistilBERT and T5 models using various values of batch size and sequence length.

Getting Started

Package Dependencies

The method were developed using Python=3.7 with transformers=4.8 framework that uses PyTorch=1.9 machine learning framework on a backend. Additionally, the repository requires packages: numpy, pandas, matplotlib and datasets.

To install required packages with PyTorch for CPU run:

pip install -r requirements.txt

For PyTorch with GPU run:

pip install -r requirements_gpu.txt

The requirement files do not contain jupyterlab nor any other IDE. To install jupyterlab run

pip install jupyterlab

Contact

Rail Chamidullin - [email protected] - Github account

Owner
Ray Chamidullin
Ray Chamidullin
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022