The Classical Language Toolkit

Overview

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.cltk.org/ for the legacy code and docs.

travis rtd codecov pypi zenodo binder

The Classical Language Toolkit (CLTK) is a Python library offering natural language processing (NLP) for the languages of pre–modern Eurasia.

Installation

For the CLTK's latest pre-release version:

$ pip install --pre cltk
Requirements:

Documentation

Documentation at https://dev.cltk.org.

Citation

@Misc{johnsonetal2014,
 author = {Johnson, Kyle P. and Patrick Burns and John Stewart and Todd Cook},
 title = {CLTK: The Classical Language Toolkit},
 url = {https://github.com/cltk/cltk},
 year = {2014--2020},
}

License

Copyright (c) 2014-2021 Kyle P. Johnson under the MIT License.

Comments
  • Add Sanskrit stopwords

    Add Sanskrit stopwords

    For @Akhilesh28. (Please assign this to yourself.)

    In Sanskrit, a stopword list would include, at least: pronouns and determiners (source), and upasarga (verbal prefix / "preverb" / "preposition") and nipāta (particle) (which I read about here). Also add anything like conjunctions, particles, and interjections.

    Just putting together this list shouldn't take more than one week. Let us know if you're having problems. You can post your stopwords here, first, as a "gist": https://gist.github.com/

    opened by kylepjohnson 55
  • Add IPA Phonetic Transcription for Greek

    Add IPA Phonetic Transcription for Greek

    This ticket is for Jack Duff, with @jtauber generously assisting.

    The basic idea is to make a map of Greek letters and their IPA equivalents, something like:

    {'α': 'a',
    'αι', 'ai',
    'ζ': 'zd',
    'θ': 'tʰ'}
    

    Obviously, it won't all be so easy, due to proximal characters changing pronunciation (for example, "γ" being IPA "ɡ" but before ["κ", "χ", "γ", "μ"] becoming "ŋ").

    If you can get this down for Attic, then consider moving on to other dialects, like Ionic or Koine.

    Within the CLTK's architecture, the transliteration maps and logic should go into something like cltk/phonetics/greek/transcription.py. Or consider making a general transcription entry point at cltk/phonetics/transcription.py and then declaring a which language and dialect. I'll leave the implementation details to you two, though.

    enhancement 
    opened by kylepjohnson 51
  • Words to be added in Sanskrit's Stop Word Collection

    Words to be added in Sanskrit's Stop Word Collection

    • ~सः (He)~
    • ~स्वयम्(himself)~
    • तदीय(theres) -आसम्(be)
    • ज्ञा (have) -परि (with) -शक्नोति(can(verb)) -यद्(if) -कतम(which)

    add all the words in all their different cases, gender and and all 3 numbers(sin, dual, plural) . If you are doing it right, there must be 72 words exactly for each entity(including a few repetitions). Needs to be careful when it come to verb's word form, they are entirely different structures.

    File at: https://github.com/cltk/cltk/blob/master/cltk/stop/sanskrit/stops.py

    opened by nikheelpandey 42
  • Scraping srimad-bhagavadgita and valmiki ramayana.

    Scraping srimad-bhagavadgita and valmiki ramayana.

    • I am Scapping Sanskrit - English data from
      • Srimad-bhagavadgita : http://www.gitasupersite.iitk.ac.in/srimad
      • Valmiki Ramayana : http://www.valmiki.iitk.ac.in/

    Ping @kylepjohnson

    new corpus 
    opened by ghost 36
  • Add corpus for classical telugu

    Add corpus for classical telugu

    https://te.wikisource.org/wiki contains the classical telugu ithihasas, puranas, vedas, stothras, etc; So I would like to scrape them and add as a new corpus.

    Thank you.

    new corpus 
    opened by ghost 31
  • Make stopwords list for Old English

    Make stopwords list for Old English

    To generalize, I observe that there are different approaches to making stopword lists, based either on statistics (most common words, variously calculated) or grammar (definite and indefinite articles, pronouns, etc.) (or some combination).

    In doing this ticket, I would like you to do a little research on whether there exist any good lists for OE. If there is one, let's just take it. If not, we can do a little more research about what's right.

    enhancement easy 
    opened by kylepjohnson 29
  • Scraping Raw Classical Hindi Data

    Scraping Raw Classical Hindi Data

    I am scraping Raw Classical Hindi Data from http://ltrc.iiit.ac.in/showfile.php?filename=downloads/Classical_Hindi_Literature/SHUSHA/index.html @kylepjohnson

    new corpus 
    opened by Akirato 29
  • Add declining tool based on Collatinus and Eulexis ?

    Add declining tool based on Collatinus and Eulexis ?

    Hi there, It's been months I have been thinking about this and I do not think CLTK contains anything like that. Collatinus and Eulexis are two Lemmatizer and Decliners which are open source (their data is either open or easy to reconstruct. And they are a nice bunch of people).

    • Collatinus is in C
      • https://github.com/biblissima/collatinus is the most up to date source code for the flexer / lemmatizer
      • https://github.com/ycollatin/Collatinus-data is the repo for their data (but not up to date I guess ). It seems this is more up to date.
    • Eulexis is in php
      • https://github.com/biblissima/eulexis/blob/master/traitement.php For the whole code

    I'd be happy to convert the collatinus flexer for CLTK in the long run (give or take few months) but I think Eulexis and the lemmatizer part are out of my scope right now.

    What's your opinion on this ? This would help search APIs a lot for text which are not lemmatized.

    opened by PonteIneptique 28
  • Normalize Unicode throughout CLTK

    Normalize Unicode throughout CLTK

    I've been reading about normalize() and hope it will prevent normalization problems in the future. This builtin method solves the problem of accented characters made with combining diacritics not equaling precomposed characters. Examples of this appear in the testing library, where I have struggled to make two strings of accented Greek equal one another.

    Example of normalize() from Fluent Python by Luciano Ramalho (117-118):

    >>> from unicodedata import normalize
    >>> s1 = 'café' # composed "e" with acute accent
    >>> s2 = 'cafe\u0301' # decomposed "e" and acute accent 
    >>> len(s1), len(s2)
    (4, 5)
    >>> len(normalize('NFC', s1)), len(normalize('NFC', s2)) 
    (4, 4)
    >>> len(normalize('NFD', s1)), len(normalize('NFD', s2)) 
    (5, 5)
    >>> normalize('NFC', s1) == normalize('NFC', s2)
    True
    >>> normalize('NFD', s1) == normalize('NFD', s2) 
    True
    

    Solutions

    1. In core, use normalize with the argument 'NFC', as Fluent Python recommends. Not all Greek combining forms may reduce into precomposed … will need to be tested out.

    2. In tests, especially for assertEqual(), check that more complicated strings equal one another. Use normalize('NFC', <text>) on the comparison strings, too, if necessary.

    3. Use this to strip out accented characters coming from the PHI, which I don't do very gracefully here: https://github.com/kylepjohnson/cltk/blob/master/cltk/corpus/utils/formatter.py#L94

    Docs: https://docs.python.org/3.4/library/unicodedata.html#unicodedata.normalize

    enhancement 
    opened by kylepjohnson 25
  • add Latin WordNet API

    add Latin WordNet API

    The Latin WordNet API mimics the NLTK Princeton WordNet API in all major respects; however because the data is sourced from latinwordnet.exeter.ac.uk (rather than locally) a number of under-the-hood changes were made. Many access methods now return generators rather than lists, and in general the API is now 'lazy' where multiple HTTP requests would cause a bottleneck. The Resnick, Jiang-Conrath, and Lin similarity scoring functions work, but require availability of a corpus-based information content file (forthcoming).

    opened by wmshort 24
  • Write syllabifiers for Indian languages

    Write syllabifiers for Indian languages

    This ticket is for @soumyag213

    As discussed by email, you'll port this and related modules, to the CLTK, from the Indic NLP Library.

    For a first step, I'd like to see this working in your own repo, which you have started at: https://github.com/soumyag213/cltk-beginning-indo. In the README for this, I would like to see an example of its API. For example, I imagine you showing something like this is the Python shell (BTW I like iPython):

    In [1]: from indic_syllabifier import orthographic_syllabify
    In [2]: orthographic_syllabify('supercalifragilisticexpialidocious', 'tamil')
    Out[2]: 'su-per-cal-i-fra-gil-ist-ic-ex-pi-al-i-doc-ious'
    
    enhancement 
    opened by kylepjohnson 24
  • Processing text with square brackets using the Latin NLP pipeline

    Processing text with square brackets using the Latin NLP pipeline

    I noticed an anomaly processing Latin text with the default pipeline. The tokenizer fails to separate square brackets from the words they enclose.

    text = 'Benedictus XVI [Iosephus Aloisius Ratzinger] fuit papa et episcopus Romanus.'
    
    from cltk import NLP
    
    cltk_nlp = NLP('lat')
    cltk_nlp.analyze(text).tokens
    

    Result:

    ['Benedictus', 'XVI', '[Iosephus', 'Aloisius', 'Ratzinger]', 'fuit', 'papa', 'et', 'episcopus', 'Romanus', '.']
    

    The problem does not occur when the LatinWordTokenizer is used.

    from cltk.tokenizers.lat.lat import LatinWordTokenizer
    
    tokenizer = LatinWordTokenizer()
    tokenizer.tokenize(text)
    

    Result:

    ['Benedictus', 'XVI', '[', 'Iosephus', 'Aloisius', 'Ratzinger', ']', 'fuit', 'papa', 'et', 'episcopus', 'Romanus', '.']
    

    Environment: Windows 10 + python 3.9.13 + cltk 1.1.6.

    bug 
    opened by DavideMassidda 0
  • SpaCy process

    SpaCy process

    I added the spaCy process with a custom wrapper to translate Token from spacy to Word in cltk. The aim is to be able to use trained models provided by spaCy with CLTK.

    opened by clemsciences 0
  • A way to tell what tokens `LatinBackOffLemmatizer()` has failed to lemmatize

    A way to tell what tokens `LatinBackOffLemmatizer()` has failed to lemmatize

    In LatinBackOffLemmatizer() and the lemmatizers in its chain I can't seem to find an option to return an empty value (such as in OldEnglishDictionaryLemmatizer()'s best_guess=False option), instead of returning the input value, when the lemmatizer fails to assign a lemma.

    Without such an option, it doesn't seem possible to tell successful from unsuccessful lemmatization attempts programmatically, severely limiting the range of the lemmatizer's applications.

    question acknowledged feature-request 
    opened by langeslag 6
  • Bump certifi from 2022.5.18.1 to 2022.12.7

    Bump certifi from 2022.5.18.1 to 2022.12.7

    Bumps certifi from 2022.5.18.1 to 2022.12.7.

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Unicode issue with Greek accented vowels in prosody

    Unicode issue with Greek accented vowels in prosody

    Unicode has two code points for acute accented vowels, one in the Greek and Coptic block and one in the Greek extended block (for omicron they are U+03CC and U+1F79. The list of accented vowels only takes into account the acute accents in the Greek and Coptic block resulting in some vowels not being properly scanned.

    >>> from cltk.prosody.grc import Scansion
    >>> text_string = "πότνια, θῦμον"
    >>> Scansion()._make_syllables(text_string)
    [[['πότνι', 'α'], ['θῦ', 'μον']]]
    

    Expected behavior

    >>> from cltk.prosody.grc import Scansion
    >>> text_string = "πότνια, θῦμον"
    >>> Scansion()._make_syllables(text_string)
    [[['πο', 'τνι' , 'α'], ['θῦ', 'μον']]]
    

    Desktop

    • MacOS 13.0
    bug 
    opened by JoshuaCCampbell 1
  • Latin enclitic tokenizer broken?

    Latin enclitic tokenizer broken?

    Latin tokenizer does not separate -que, ne, ve. In line 147 of tokenizers/lat/lat.py I suggest: specific_tokens += [token[: -len(enclitic)]] + ["-"+enclitic] This fixed it for me.

    Mac OS 15.7 Python 3.9

    bug 
    opened by polycrates 3
Releases(1.0.15)
Owner
Classical Language Toolkit
Natural language processing for Classical languages
Classical Language Toolkit
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022