A single model that parses Universal Dependencies across 75 languages.

Overview

UDify

MIT License

UDify is a single model that parses Universal Dependencies (UPOS, UFeats, Lemmas, Deps) jointly, accepting any of 75 supported languages as input (trained on UD v2.3 with 124 treebanks). This repository accompanies the paper, "75 Languages, 1 Model: Parsing Universal Dependencies Universally," providing tools to train a multilingual model capable of parsing any Universal Dependencies treebank with high accuracy. This project also supports training and evaluating for the SIGMORPHON 2019 Shared Task #2, which achieved 1st place in morphology tagging (paper can be found here).

Integration with SpaCy is supported by Camphr.

UDify Model Architecture

The project is built using AllenNLP and PyTorch.

Getting Started

Install the Python packages in requirements.txt. UDify depends on AllenNLP and PyTorch. For Windows OS, use WSL. Optionally, install TensorFlow to get access to TensorBoard to get a rich visualization of model performance on each UD task.

pip install -r ./requirements.txt

Download the UD corpus by running the script

bash ./scripts/download_ud_data.sh

or alternatively download the data from universaldependencies.org and extract into data/ud-treebanks-v2.3/, then run scripts/concat_ud_data.sh to generate the multilingual UD dataset.

Training the Model

Before training, make sure the dataset is downloaded and extracted into the data directory and the multilingual dataset is generated with scripts/concat_ud_data.sh. To train the multilingual model (fine-tune UD on BERT), run the command

python train.py --config config/ud/multilingual/udify_bert_finetune_multilingual.json --name multilingual

which will begin loading the dataset and model before training the network. The model metrics, vocab, and weights will be saved under logs/multilingual. Note that this process is highly memory intensive and requires 16+ GB of RAM and 12+ GB of GPU memory (requirements are half if fp16 is enabled in AllenNLP, but this requires custom changes to the library). The training may take 20 or more days to complete all 80 epochs depending on the type of your GPU.

Training on Other Datasets

An example config is given for fine-tuning on just English EWT. Just run:

python train.py --config config/ud/en/udify_bert_finetune_en_ewt.json --name en_ewt --dataset_dir data/ud-treebanks-v2.3/

To run your own dataset, copy config/ud/multilingual/udify_bert_finetune_multilingual.json and modify the following json parameters:

  • train_data_path, validation_data_path, and test_data_path to the paths of the dataset conllu files. These can be optionally null.
  • directory_path to data/vocab/ /vocabulary .
  • warmup_steps and start_step to be equal to the number of steps in the first epoch. A good initial value is in the range 100-1000. Alternatively, run the training script first to see the number of steps to the right of the progress bar.
  • If using just one treebank, optionally add xpos to the tasks list.

Viewing Model Performance

One can view how well the models are performing by running TensorBoard

tensorboard --logdir logs

This should show the currently trained model as well as any other previously trained models. The model will be stored in a folder specified by the --name parameter as well as a date stamp, e.g., logs/multilingual/2019.07.03_11.08.51.

Pretrained Models

Pretrained models can be found here. This can be used for predicting conllu annotations or for fine-tuning. The link contains the following:

  • udify-model.tar.gz - The full UDify model archive that can be used for prediction with predict.py. Note that this model has been trained for extra epochs, and may differ slightly from the model shown in the original research paper.
  • udify-bert.tar.gz - The extracted BERT weights from the UDify model, in huggingface transformers (pytorch-pretrained-bert) format.

Predicting Universal Dependencies from a Trained Model

To predict UD annotations, one can supply the path to the trained model and an input conllu-formatted file:

python predict.py <archive> <input.conllu> <output.conllu> [--eval_file results.json]

For instance, predicting the dev set of English EWT with the trained model saved under logs/model.tar.gz and UD treebanks at data/ud-treebanks-v2.3 can be done with

python predict.py logs/model.tar.gz  data/ud-treebanks-v2.3/UD_English-EWT/en_ewt-ud-dev.conllu logs/pred.conllu --eval_file logs/pred.json

and will save the output predictions to logs/pred.conllu and evaluation to logs/pred.json.

Configuration Options

  1. One can specify the type of device to run on. For a single GPU, use the flag --device 0, or --device -1 for CPU.
  2. To skip waiting for the dataset to be fully loaded into memory, use the flag --lazy. Note that the dataset won't be shuffled.
  3. Resume an existing training run with --resume .
  4. Specify a config file with --config .

SIGMORPHON 2019 Shared Task

A modification to the basic UDify model is available for parsing morphology in the SIGMORPHON 2019 Shared Task #2. The following paper describes the model in more detail: "Cross-Lingual Lemmatization and Morphology Tagging with Two-Stage Multilingual BERT Fine-Tuning".

Training is similar to UD, just run download_sigmorphon_data.sh and then use the configuration file under config/sigmorphon/multilingual, e.g.,

python train.py --config config/sigmorphon/multilingual/udify_bert_sigmorphon_multilingual.json --name sigmorphon

FAQ

  1. When fine-tuning, my scores/metrics show poor performance.

It should take about 10 epochs to start seeing good scores coming from all the metrics, and 80 epochs to be competitive with UDPipe Future.

One caveat is that if you use a subset of treebanks for fine-tuning instead of all 124 UD v2.3 treebanks, you must modify the configuration file. Make sure to tune the learning rate scheduler to the number of training steps. Copy the udify_bert_finetune_multilingual.json config and modify the "warmup_steps" and "start_step" values. A good initial choice would be to set both to be equal to the number of training batches of one epoch (run the training script first to see the batches remaining, to the right of the progress bar).

Have a question not listed here? Open a GitHub Issue.

Citing This Research

If you use UDify for your research, please cite this work as:

@inproceedings{kondratyuk-straka-2019-75,
    title = {75 Languages, 1 Model: Parsing Universal Dependencies Universally},
    author = {Kondratyuk, Dan and Straka, Milan},
    booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
    year = {2019},
    address = {Hong Kong, China},
    publisher = {Association for Computational Linguistics},
    url = {https://www.aclweb.org/anthology/D19-1279},
    pages = {2779--2795}
}
Owner
Dan Kondratyuk
Machine Learning, NLP, and Computer Vision. I love a fresh challenge—be it a math problem, a physics puzzle, or programming quandary.
Dan Kondratyuk
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022