A single model that parses Universal Dependencies across 75 languages.

Overview

UDify

MIT License

UDify is a single model that parses Universal Dependencies (UPOS, UFeats, Lemmas, Deps) jointly, accepting any of 75 supported languages as input (trained on UD v2.3 with 124 treebanks). This repository accompanies the paper, "75 Languages, 1 Model: Parsing Universal Dependencies Universally," providing tools to train a multilingual model capable of parsing any Universal Dependencies treebank with high accuracy. This project also supports training and evaluating for the SIGMORPHON 2019 Shared Task #2, which achieved 1st place in morphology tagging (paper can be found here).

Integration with SpaCy is supported by Camphr.

UDify Model Architecture

The project is built using AllenNLP and PyTorch.

Getting Started

Install the Python packages in requirements.txt. UDify depends on AllenNLP and PyTorch. For Windows OS, use WSL. Optionally, install TensorFlow to get access to TensorBoard to get a rich visualization of model performance on each UD task.

pip install -r ./requirements.txt

Download the UD corpus by running the script

bash ./scripts/download_ud_data.sh

or alternatively download the data from universaldependencies.org and extract into data/ud-treebanks-v2.3/, then run scripts/concat_ud_data.sh to generate the multilingual UD dataset.

Training the Model

Before training, make sure the dataset is downloaded and extracted into the data directory and the multilingual dataset is generated with scripts/concat_ud_data.sh. To train the multilingual model (fine-tune UD on BERT), run the command

python train.py --config config/ud/multilingual/udify_bert_finetune_multilingual.json --name multilingual

which will begin loading the dataset and model before training the network. The model metrics, vocab, and weights will be saved under logs/multilingual. Note that this process is highly memory intensive and requires 16+ GB of RAM and 12+ GB of GPU memory (requirements are half if fp16 is enabled in AllenNLP, but this requires custom changes to the library). The training may take 20 or more days to complete all 80 epochs depending on the type of your GPU.

Training on Other Datasets

An example config is given for fine-tuning on just English EWT. Just run:

python train.py --config config/ud/en/udify_bert_finetune_en_ewt.json --name en_ewt --dataset_dir data/ud-treebanks-v2.3/

To run your own dataset, copy config/ud/multilingual/udify_bert_finetune_multilingual.json and modify the following json parameters:

  • train_data_path, validation_data_path, and test_data_path to the paths of the dataset conllu files. These can be optionally null.
  • directory_path to data/vocab/ /vocabulary .
  • warmup_steps and start_step to be equal to the number of steps in the first epoch. A good initial value is in the range 100-1000. Alternatively, run the training script first to see the number of steps to the right of the progress bar.
  • If using just one treebank, optionally add xpos to the tasks list.

Viewing Model Performance

One can view how well the models are performing by running TensorBoard

tensorboard --logdir logs

This should show the currently trained model as well as any other previously trained models. The model will be stored in a folder specified by the --name parameter as well as a date stamp, e.g., logs/multilingual/2019.07.03_11.08.51.

Pretrained Models

Pretrained models can be found here. This can be used for predicting conllu annotations or for fine-tuning. The link contains the following:

  • udify-model.tar.gz - The full UDify model archive that can be used for prediction with predict.py. Note that this model has been trained for extra epochs, and may differ slightly from the model shown in the original research paper.
  • udify-bert.tar.gz - The extracted BERT weights from the UDify model, in huggingface transformers (pytorch-pretrained-bert) format.

Predicting Universal Dependencies from a Trained Model

To predict UD annotations, one can supply the path to the trained model and an input conllu-formatted file:

python predict.py <archive> <input.conllu> <output.conllu> [--eval_file results.json]

For instance, predicting the dev set of English EWT with the trained model saved under logs/model.tar.gz and UD treebanks at data/ud-treebanks-v2.3 can be done with

python predict.py logs/model.tar.gz  data/ud-treebanks-v2.3/UD_English-EWT/en_ewt-ud-dev.conllu logs/pred.conllu --eval_file logs/pred.json

and will save the output predictions to logs/pred.conllu and evaluation to logs/pred.json.

Configuration Options

  1. One can specify the type of device to run on. For a single GPU, use the flag --device 0, or --device -1 for CPU.
  2. To skip waiting for the dataset to be fully loaded into memory, use the flag --lazy. Note that the dataset won't be shuffled.
  3. Resume an existing training run with --resume .
  4. Specify a config file with --config .

SIGMORPHON 2019 Shared Task

A modification to the basic UDify model is available for parsing morphology in the SIGMORPHON 2019 Shared Task #2. The following paper describes the model in more detail: "Cross-Lingual Lemmatization and Morphology Tagging with Two-Stage Multilingual BERT Fine-Tuning".

Training is similar to UD, just run download_sigmorphon_data.sh and then use the configuration file under config/sigmorphon/multilingual, e.g.,

python train.py --config config/sigmorphon/multilingual/udify_bert_sigmorphon_multilingual.json --name sigmorphon

FAQ

  1. When fine-tuning, my scores/metrics show poor performance.

It should take about 10 epochs to start seeing good scores coming from all the metrics, and 80 epochs to be competitive with UDPipe Future.

One caveat is that if you use a subset of treebanks for fine-tuning instead of all 124 UD v2.3 treebanks, you must modify the configuration file. Make sure to tune the learning rate scheduler to the number of training steps. Copy the udify_bert_finetune_multilingual.json config and modify the "warmup_steps" and "start_step" values. A good initial choice would be to set both to be equal to the number of training batches of one epoch (run the training script first to see the batches remaining, to the right of the progress bar).

Have a question not listed here? Open a GitHub Issue.

Citing This Research

If you use UDify for your research, please cite this work as:

@inproceedings{kondratyuk-straka-2019-75,
    title = {75 Languages, 1 Model: Parsing Universal Dependencies Universally},
    author = {Kondratyuk, Dan and Straka, Milan},
    booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
    year = {2019},
    address = {Hong Kong, China},
    publisher = {Association for Computational Linguistics},
    url = {https://www.aclweb.org/anthology/D19-1279},
    pages = {2779--2795}
}
Owner
Dan Kondratyuk
Machine Learning, NLP, and Computer Vision. I love a fresh challenge—be it a math problem, a physics puzzle, or programming quandary.
Dan Kondratyuk
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Saptak Bhoumik 14 May 24, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022