Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Overview

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Yoonhyung Lee, Joongbo Shin, Kyomin Jung

Abstract: Although early text-to-speech (TTS) models such as Tacotron 2 have succeeded in generating human-like speech, their autoregressive architectures have several limitations: (1) They require a lot of time to generate a mel-spectrogram consisting of hundreds of steps. (2) The autoregressive speech generation shows a lack of robustness due to its error propagation property. In this paper, we propose a novel non-autoregressive TTS model called BVAE-TTS, which eliminates the architectural limitations and generates a mel-spectrogram in parallel. BVAE-TTS adopts a bidirectional-inference variational autoencoder (BVAE) that learns hierarchical latent representations using both bottom-up and top-down paths to increase its expressiveness. To apply BVAE to TTS, we design our model to utilize text information via an attention mechanism. By using attention maps that BVAE-TTS generates, we train a duration predictor so that the model uses the predicted duration of each phoneme at inference. In experiments conducted on LJSpeech dataset, we show that our model generates a mel-spectrogram 27 times faster than Tacotron 2 with similar speech quality. Furthermore, our BVAE-TTS outperforms Glow-TTS, which is one of the state-of-the-art non-autoregressive TTS models, in terms of both speech quality and inference speed while having 58% fewer parameters. One-sentence Summary: In this paper, a novel non-autoregressive text-to-speech model based on bidirectional-inference variational autoencoder called BVAE-TTS is proposed.

Training

  1. Download and extract the LJ Speech dataset
  2. Make preprocessed folder in the LJSpeech directory and do preprocessing of the data using prepare_data.ipynb
  3. Set the data_path in hparams.py to the preprocessed folder
  4. Train your own BVAE-TTS model
python train.py --gpu=0 --logdir=baseline  

Pre-trained models

We provide a pre-trained BVAE-TTS model, which is a model that you would obtain with the current setting (e.g. hyperparameters, dataset split). Also, we provide a pre-trained WaveGlow model that is used to obtain the audio samples. After downloading the models, you can generate audio samples using inference.ipynb.

Audio Samples

You can hear the audio samples here

Reference

1.NVIDIA/tacotron2: https://github.com/NVIDIA/tacotron2
2.NVIDIA/waveglow: https://github.com/NVIDIA/waveglow
3.pclucas/iaf-vae: https://github.com/pclucas14/iaf-vae

The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022