Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

Overview

efficient-task-transfer

This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection". Most importantly, this includes scripts for easy training of Transformers and Adapters across a wide range of NLU tasks.

Overview

The repository is structured as follows:

  • itrain holds the itrain package which allows easy setup, training and evaluation of Transformers and Adapters
  • run_configs provides default training configuration of all tasks currently supported by itrain
  • training_scripts provides scripts for sequential adapter fine-tuning and adapter fusion as used in the paper
  • task_selection provides scripts used for intermediate task selection in the paper

Setup & Requirements

The code in this repository was developed using Python v3.6.8, PyTorch v1.7.1 and adapter-transformers v1.1.1, which is based on HuggingFace Transformers v3.5.1. Using version different from the ones specified might not work.

After setting up Python and PyTorch (ideally in a virtual environment), all additional requirements together with the itrain package can be installed using:

pip install -e .

Additional setup steps required for running some scripts are detailed below locations.

Transformer & Adapter Training

The itrain package provides a simple interface for configuring Transformer and Adapter training runs. itrain provides tools for:

  • downloading and preprocessing datasets via HuggingFace datasets
  • setting up Transformers and Adapter training
  • training and evaluating on different tasks
  • notifying on training start and results via mail or Telegram

itrain can be invoked from the command line by passing a run configuration file in json format. Example configurations for all currently supported tasks can be found in the run_configs folder. All supported configuration keys are defined in arguments.py.

Running a setup from the command line can look like this:

itrain --id 42 run_configs/sst2.json

This will train an adapter on the SST-2 task using robert-base as the base model (as specified in the config file).

Besides modifying configuration keys directly in the json file, they can be overriden using command line parameters. E.g., we can modify the previous training run to fully fine-tune a bert-base-uncased model:

itrain --id <run_id> \
    --model_name_or_path bert-base-uncased \
    --train_adapter false \
    --learning_rate 3e-5 \
    --num_train_epochs 3 \
    --patience 0 \
    run_configs/<task>.json

Alternatively, training setups can be configured directly in Python by using the Setup class of itrain. An example for this is given in example.py.

Intermediate Task Transfer & Task Selection Experiments

Some scripts that helped running experiments presented in "What to Pre-Train on? Efficient Intermediate Task Selection" are provided:

  • See training_scripts for details on intermediate task transfer using sequential fine-tuning or adapter fusion
  • See task_selection for details on intermediate task selection methods.

All these scripts rely on pre-trained models/ adapters as described above and the following additional setup.

Setup

We used a configuration file to specify the pre-trained models/ adapters and tasks to be used as transfer sources and transfer targets for different task transfer strategies and task selection methods. The full configuration as used in the paper is given in task_map.json. It has to be modified to use self-trained models/ adapters:

  • from and to specify which tasks are used as transfer source and transfer targets (names as defined in run_configs)
  • source_path_format and target_path_format specify templates for the locations of pre-trained models/ adapters
  • adapters provides a mapping from pre-trained (source) models/ adapters to run ids

Finally, the path to this task map and the folder holding the run configurations have to be made available to the scripts:

export RUN_CONFIG_DIR="/path/to/run_configs"
export DEFAULT_TASK_MAP="/path/to/task_map.json"

Credits

Citation

If you find this repository helpful, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":

@inproceedings{poth-etal-2021-what-to-pre-train-on,
    title={What to Pre-Train on? Efficient Intermediate Task Selection},
    author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2104.08247",
    pages = "to appear",
}
Owner
AdapterHub
AdapterHub
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Yuqing Xie 2 Feb 17, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022