A Chinese to English Neural Model Translation Project

Overview

ZH-EN NMT Chinese to English Neural Machine Translation

This project is inspired by Stanford's CS224N NMT Project

Dataset used in this project: News Commentary v14

Intro

This project is more of a learning project to make myself familiar with Pytorch, machine translation, and NLP model training.

To investigate how would various setups of the recurrent layer affect the final performance, I compared Training Efficiency and Effectiveness of different types of RNN layer for encoder by changing one feature each time while controlling all other parameters:

  • RNN types

    • GRU
    • LSTM
  • Activation Functions on Output Layer

    • Tanh
    • ReLU
    • LeakyReLU
  • Number of layers

    • single layer
    • double layer

Code Files

_/
├─ utils.py # utilities
├─ vocab.py # generate vocab
├─ model_embeddings.py # embedding layer
├─ nmt_model.py # nmt model definition
├─ run.py # training and testing

Good Translation Examples

  • source: 相反,这意味着合作的基础应当是共同的长期战略利益,而不是共同的价值观。

    • target: Instead, it means that cooperation must be anchored not in shared values, but in shared long-term strategic interests.
    • translation: On the contrary, that means cooperation should be a common long-term strategic interests, rather than shared values.
  • source: 但这个问题其实很简单: 谁来承受这些用以降低预算赤字的紧缩措施的冲击。

    • target: But the issue is actually simple: Who will bear the brunt of measures to reduce the budget deficit?
    • translation: But the question is simple: Who is to bear the impact of austerity measures to reduce budget deficits?
  • source: 上述合作对打击恐怖主义、贩卖人口和移民可能发挥至关重要的作用。

    • target: Such cooperation is essential to combat terrorism, human trafficking, and migration.
    • translation: Such cooperation is essential to fighting terrorism, trafficking, and migration.
  • source: 与此同时, 政治危机妨碍着政府追求艰难的改革。

    • target: At the same time, political crisis is impeding the government’s pursuit of difficult reforms.
    • translation: Meanwhile, political crises hamper the government’s pursuit of difficult reforms.

Preprocessing

Preprocessing Colab notebook

  • using jieba to separate Chinese words by spaces

Generate Vocab From Training Data

  • Input: training data of Chinese and English

  • Output: a vocab file containing mapping from (sub)words to ids of Chinese and English -- a limited size of vocab is selected using SentencePiece (essentially Byte Pair Encoding of character n-grams) to cover around 99.95% of training data

Model Definition

  • a Seq2Seq model with attention

    This image is from the book DIVE INTO DEEP LEARNING

    • Encoder
      • A Recurrent Layer
    • Decoder
      • LSTMCell (hidden_size=512)
    • Attention
      • Multiplicative Attention

Training And Testing Results

Training Colab notebook

  • Hyperparameters:
    • Embedding Size & Hidden Size: 512
    • Dropout Rate: 0.25
    • Starting Learning Rate: 5e-4
    • Batch Size: 32
    • Beam Size for Beam Search: 10
  • NOTE: The BLEU score calculated here is based on the Test Set, so it could only be used to compare the relative effectiveness of the models using this data

For Experiment

  • Dataset: the dataset is split into training set(~260000), validation set(~20000), and testing set(~20000) randomly (they are the same for each experiment group)
  • Max Number of Iterations: 50000
  • NOTE: I've tried Vanilla-RNN(nn.RNN) in various ways, but the BLEU score turns out to be extremely low for it (absence of residual connections might be the issue)
    • I decided to not include it for comparison until the issue is resolved
Training Time(sec) BLEU Score on Test Set Training Perplexities Validation Perplexities
A. Bidirectional 1-Layer GRU with Tanh 5158.99 14.26
B. Bidirectional 1-Layer LSTM with Tanh 5150.31 16.20
C. Bidirectional 2-Layer LSTM with Tanh 6197.58 16.38
D. Bidirectional 1-Layer LSTM with ReLU 5275.12 14.01
E. Bidirectional 1-Layer LSTM with LeakyReLU(slope=0.1) 5292.58 14.87

Current Best Version

Bidirectional 2-Layer LSTM with Tanh, 1024 embed_size & hidden_size, trained 11517.19 sec (44000 iterations), BLEU score 17.95

Traning Time BLEU Score on Test Set Training Perplexities Validation Perplexities
Best Model 11517.19 17.95

Analysis

  • LSTM tends to have better performance than GRU (it has an extra set of parameters)
  • Tanh tends to be better since less information is lost
  • Making the LSTM deeper (more layers) could improve the performance, but it cost more time to train
  • Surprisingly, the training time for A, B, and D are roughly the same
    • the issue may be the dataset is not large enough, or the cloud service I used to train models does not perform consistently

Bad Examples & Case Analysis

  • source: 全球目击组织(Global Witness)的报告记录, 光是2015年就有16个国家的185人被杀。
    • target: A Global Witness report documented 185 killings across 16 countries in 2015 alone.
    • translation: According to the Global eye, the World Health Organization reported that 185 people were killed in 2015.
    • problems:
      • Information Loss: 16 countries
      • Unknown Proper Noun: Global Witness
  • source: 大自然给了足以满足每个人需要的东西, 但无法满足每个人的贪婪
    • target: Nature provides enough for everyone’s needs, but not for everyone’s greed.
    • translation: Nature provides enough to satisfy everyone.
    • problems:
      • Huge Information Loss
  • source: 我衷心希望全球经济危机和巴拉克·奥巴马当选总统能对新冷战的荒唐理念进行正确的评估。
    • target: It is my hope that the global economic crisis and Barack Obama’s presidency will put the farcical idea of a new Cold War into proper perspective.
    • translation: I do hope that the global economic crisis and President Barack Obama will be corrected for a new Cold War.
    • problems:
      • Action Sender And Receiver Exchanged
      • Failed To Translate Complex Sentence
  • source: 人们纷纷猜测欧元区将崩溃。
    • target: Speculation about a possible breakup was widespread.
    • translation: The eurozone would collapse.
    • problems:
      • Significant Information Loss

Means to Improve the NMT model

  • Dataset
    • The dataset is fairly small, and our model is not being trained thorough all data
    • Being a native Chinese speaker, I could not understand what some of the source sentences are saying
    • The target sentences are not informational comprehensive; they themselves need context to be understood (e.g. the target sentence in the last "Bad Examples")
    • Even for human, some of the source sentence was too hard to translate
  • Model Architecture
    • CNN & Transformer
    • character based model
    • Make the model even larger & deeper (... I need GPUs)
  • Tricks that might help
    • Add a proper noun dictionary to translate unknown proper nouns word-by-word (phrase-by-phrase)
    • Initialize (sub)word embedding with pretrained embedding

How To Run

  • Download the dataset you desire, and change all "./zh_en_data" in run.sh to the path where your data is stored
  • To run locally on a CPU (mostly for sanity check, CPU is not able to train the model)
    • set up the environment using conda/miniconda conda env create --file local env.yml
  • To run on a GPU
    • set up the environment and running process following the Colab notebook

Contact

If you have any questions or you have trouble running the code, feel free to contact me via email

Owner
Zhenbang Feng
Be an engineer, not a coder. [email protected]
Zhenbang Feng
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021