Big Bird: Transformers for Longer Sequences

Overview

Big Bird: Transformers for Longer Sequences

Not an official Google product.

What is BigBird?

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization.

More details and comparisons can be found in our presentation.

Citation

If you find this useful, please cite our NeurIPS 2020 paper:

@article{zaheer2020bigbird,
  title={Big bird: Transformers for longer sequences},
  author={Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Code

The most important directory is core. There are three main files in core.

  • attention.py: Contains BigBird linear attention mechanism
  • encoder.py: Contains the main long sequence encoder stack
  • modeling.py: Contains packaged BERT and seq2seq transformer models with BigBird attention

Colab/IPython Notebook

A quick fine-tuning demonstration for text classification is provided in imdb.ipynb

Create GCP Instance

Please create a project first and create an instance in a zone which has quota as follows

gcloud compute instances create \
  bigbird \
  --zone=europe-west4-a \
  --machine-type=n1-standard-16 \
  --boot-disk-size=50GB \
  --image-project=ml-images \
  --image-family=tf-2-3-1 \
  --maintenance-policy TERMINATE \
  --restart-on-failure \
  --scopes=cloud-platform

gcloud compute tpus create \
  bigbird \
  --zone=europe-west4-a \
  --accelerator-type=v3-32 \
  --version=2.3.1

gcloud compute ssh --zone "europe-west4-a" "bigbird"

For illustration we used instance name bigbird and zone europe-west4-a, but feel free to change them. More details about creating Google Cloud TPU can be found in online documentations.

Instalation and checkpoints

git clone https://github.com/google-research/bigbird.git
cd bigbird
pip3 install -e .

You can find pretrained and fine-tuned checkpoints in our Google Cloud Storage Bucket.

Optionally, you can download them using gsutil as

mkdir -p bigbird/ckpt
gsutil cp -r gs://bigbird-transformer/ bigbird/ckpt/

The storage bucket contains:

  • pretrained BERT model for base(bigbr_base) and large (bigbr_large) size. It correspond to BERT/RoBERTa-like encoder only models. Following original BERT and RoBERTa implementation they are transformers with post-normalization, i.e. layer norm is happening after the attention layer. However, following Rothe et al, we can use them partially in encoder-decoder fashion by coupling the encoder and decoder parameters, as illustrated in bigbird/summarization/roberta_base.sh launch script.
  • pretrained Pegasus Encoder-Decoder Transformer in large size(bigbp_large). Again following original implementation of Pegasus, they are transformers with pre-normalization. They have full set of separate encoder-decoder weights. Also for long document summarization datasets, we have converted Pegasus checkpoints (model.ckpt-0) for each dataset and also provided fine-tuned checkpoints (model.ckpt-300000) which works on longer documents.
  • fine-tuned tf.SavedModel for long document summarization which can be directly be used for prediction and evaluation as illustrated in the colab nootebook.

Running Classification

For quickly starting with BigBird, one can start by running the classification experiment code in classifier directory. To run the code simply execute

export GCP_PROJECT_NAME=bigbird-project  # Replace by your project name
export GCP_EXP_BUCKET=gs://bigbird-transformer-training/  # Replace
sh -x bigbird/classifier/base_size.sh

Using BigBird Encoder instead BERT/RoBERTa

To directly use the encoder instead of say BERT model, we can use the following code.

from bigbird.core import modeling

bigb_encoder = modeling.BertModel(...)

It can easily replace BERT's encoder.

Alternatively, one can also try playing with layers of BigBird encoder

from bigbird.core import encoder

only_layers = encoder.EncoderStack(...)

Understanding Flags & Config

All the flags and config are explained in core/flags.py. Here we explain some of the important config paramaters.

attention_type is used to select the type of attention we would use. Setting it to block_sparse runs the BigBird attention module.

flags.DEFINE_enum(
    "attention_type", "block_sparse",
    ["original_full", "simulated_sparse", "block_sparse"],
    "Selecting attention implementation. "
    "'original_full': full attention from original bert. "
    "'simulated_sparse': simulated sparse attention. "
    "'block_sparse': blocked implementation of sparse attention.")

block_size is used to define the size of blocks, whereas num_rand_blocks is used to set the number of random blocks. The code currently uses window size of 3 blocks and 2 global blocks. The current code only supports static tensors.

Important points to note:

  • Hidden dimension should be divisible by the number of heads.
  • Currently the code only handles tensors of static shape as it is primarily designed for TPUs which only works with statically shaped tensors.
  • For sequene length less than 1024, using original_full is advised as there is no benefit in using sparse BigBird attention.
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022