Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Overview

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive"

This repository contains demo programs for the Talking Head Anime from a Single Image 2: More Expressive project. Similar to the previous version, it has two programs:

  • The manual_poser lets you manipulate the facial expression and the head rotation of an anime character, given in a single image, through a graphical user interface. The poser is available in two forms: a standard GUI application, and a Jupyter notebook.
  • The ifacialmocap_puppeteer lets you transfer your facial motion, captured by a commercial iOS application called iFacialMocap, to an image of an anime character.

Try the Manual Poser on Google Colab

If you do not have the required hardware (discussed below) or do not want to download the code and set up an environment to run it, click this link to try running the manual poser on Google Colab.

Hardware Requirements

Both programs require a recent and powerful Nvidia GPU to run. I could personally ran them at good speed with the Nvidia Titan RTX. However, I think recent high-end gaming GPUs such as the RTX 2080, the RTX 3080, or better would do just as well.

The ifacialmocap_puppeteer requires an iOS device that is capable of computing blend shape parameters from a video feed. This means that the device must be able to run iOS 11.0 or higher and must have a TrueDepth front-facing camera. (See this page for more info.) In other words, if you have the iPhone X or something better, you should be all set. Personally, I have used an iPhone 12 mini.

Software Requirements

Both programs were written in Python 3. To run the GUIs, the following software packages are required:

  • Python >= 3.8
  • PyTorch >= 1.7.1 with CUDA support
  • SciPY >= 1.6.0
  • wxPython >= 4.1.1
  • Matplotlib >= 3.3.4

In particular, I created the environment to run the programs with Anaconda, using the following commands:

> conda create -n talking-head-anime-2-demo python=3.8
> conda activate talking-head-anime-2-demo
> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
> conda install scipy
> pip install wxPython
> conda install matplotlib

To run the Jupyter notebook version of the manual_poser, you also need:

  • Jupyter Notebook >= 6.2.0
  • IPyWidgets >= 7.6.3

This means that, in addition to the commands above, you also need to run:

> conda install -c conda-forge notebook
> conda install -c conda-forge ipywidgets
> jupyter nbextension enable --py widgetsnbextension

Lastly, the ifacialmocap_puppeteer requires iFacialMocap, which is available in the App Store for 980 yen. You also need to install the paired desktop application on your PC or Mac. (Linux users, I'm sorry!) Your iOS and your computer must also use the same network. (For example, you may connect them to the same wireless router.)

Automatic Environment Construction with Anaconda

You can also use Anaconda to download and install all Python packages in one command. Open your shell, change the directory to where you clone the repository, and run:

conda env create -f environment.yml

This will create an environment called talking-head-anime-2-demo containing all the required Python packages.

Download the Model

Before running the programs, you need to download the model files from this Dropbox link and unzip it to the data folder of the repository's directory. In the end, the data folder should look like:

+ data
  + illust
    - waifu_00.png
    - waifu_01.png
    - waifu_02.png
    - waifu_03.png
    - waifu_04.png
    - waifu_05.png
    - waifu_06.png
    - waifu_06_buggy.png
  - combiner.pt
  - eyebrow_decomposer.pt
  - eyebrow_morphing_combiner.pt
  - face_morpher.pt
  - two_algo_face_rotator.pt

The model files are distributed with the Creative Commons Attribution 4.0 International License, which means that you can use them for commercial purposes. However, if you distribute them, you must, among other things, say that I am the creator.

Running the manual_poser Desktop Application

Open a shell. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/manual_poser.py

Note that before running the command above, you might have to activate the Python environment that contains the required packages. If you created an environment using Anaconda as was discussed above, you need to run

> conda activate talking-head-anime-2-demo

if you have not already activated the environment.

Running the manual_poser Jupyter Notebook

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> jupyter notebook

A browser window should open. In it, open tha2.ipynb. Once you have done so, you should see that it only has one cell. Run it. Then, scroll down to the end of the document, and you'll see the GUI there.

Running the ifacialmocap_puppeteer

First, run iFacialMocap on your iOS device. It should show you the device's IP address. Jot it down. Keep the app open.

IP address in iFacialMocap screen

Then, run the companion desktop application.

iFaciaMocap desktop application

Click "Open Advanced Setting >>". The application should expand.

Click the 'Open Advanced Setting >>' button.

Click the button that says "Maya" on the right side.

Click the 'Maya' button.

Then, click "Blender."

Select 'Blender' mode in the desktop application

Next, replace the IP address on the left side with your iOS device's IP address.

Replace IP address with device's IP address.

Click "Connect to Blender."

Click 'Connect to Blender.'

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/ifacialmocap_puppeteer.py

If the programs are connected properly, you should see that the many progress bars at the bottom of the ifacialmocap_puppeteer window should move when you move your face in front of the iOS device's front-facing camera.

You should see the progress bars moving.

If all is well, load an character image, and it should follow your facial movement.

Constraints on Input Images

In order for the model to work well, the input image must obey the following constraints:

  • It must be of size 256 x 256.
  • It must be of PNG format.
  • It must have an alpha channel.
  • It must contain only one humanoid anime character.
  • The character must be looking straight ahead.
  • The head of the character should be roughly contained in the middle 128 x 128 box.
  • All pixels that do not belong to the character (i.e., background pixels) should have RGBA = (0,0,0,0).

Image specification

FAQ: I prepared an image just like you said, why is my output so ugly?!?

This is most likely because your image does not obey the "background RGBA = (0,0,0,0)" constraint. In other words, your background pixels are (RRR,GGG,BBB,0) for some RRR, GGG, BBB > 0 rather than (0,0,0,0). This happens when you use Photoshop because it does not clear the RGB channels of transparent pixels.

Let's see an example. When I tried to use the manual_poser with data/illust/waifu_06_buggy.png. Here's what I got.

A failure case

When you look at the image, there seems to be nothing wrong with it.

waifu_06_buggy.png

However, if you inspect it with GIMP, you will see that the RGB channels have what backgrounds, which means that those pixels have non-zero RGB values.

In the buggy image, background pixels have colors in the RGB channels.

What you want, instead, is something like the non-buggy version: data/illust/waifu_06.png, which looks exactly the same as the buggy one to the naked eyes.

waifu_06.png

However, in GIMP, all channels have black backgrounds.

In the good image, background pixels do not have colors in any channels.

Because of this, the output was clean.

A success case

A way to make sure that your image works well with the model is to prepare it with GIMP. When exporting your image to the PNG format, make sure to uncheck "Save color values from transparent pixels" before you hit "Export."

Make sure to uncheck 'Save color values from transparent pixels' before exporting!

Disclaimer

While the author is an employee of Google Japan, this software is not Google's product and is not supported by Google.

The copyright of this software belongs to me as I have requested it using the IARC process. However, Google might claim the rights to the intellectual property of this invention.

The code is released under the MIT license. The model is released under the Creative Commons Attribution 4.0 International License.

Owner
Pramook Khungurn
A software developer from Thailand, interested in computer graphics, machine learning, and algorithms.
Pramook Khungurn
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. C

Raphael Sourty 224 Nov 29, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023