Final Project Bootcamp Zero

Overview

The Quest (Pygame)

Descripción

Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding.

El juego consiste en la búsqueda de nuevos planetas para colonizarlos. Durante el transcurso del viaje aparecerán desafíos, ya sean naves enemigas u oleadas de meteoritos. Cada nivel constará de 1 minuto más de viaje y cada desafío aumentará en número y velocidad. El jugador dispondrá de munición de balas y carga de misiles para afrontar los desafíos durante el viaje. Propulsor que reducirá el tiempo de viaje a la mitad aunque no podrá moverme mientras esté activo. Y una barra de salud más 3 vidas extra. Si consume todas las vidas perderá la partida.

Informacion del repositorio

Realizado por:

Nombre Email
Sergio Fuentes (Seven) [email protected]

En el transcurso de las 3 semanas para realizar el proyecto final del curso he completado The Quest v1.0. Utilicé varias herramientas objeto prediseñados para una funcionalidad mejorada y eficiente durante el desarrollo del juego. De los más útiles a destacar fue el objeto Sprite sheet que me facilitó la descarga de cualquier imagen y la creación de instancias heredando todas sus características como objeto base. Un objeto con 4 tipos diferentes de temporizadores múltiples. Un algoritmo muy reducido que me permitía moverme entre las escenas del juego en cualquier sentido. Un objeto que controla consultas CRUD con SQLite registrando los datos de cada jugador en todo momento. También creé botones, barras, tablero y teclado entre otros para facilitar y mejorar la interactividad del usuario. Y múltiples ideas que preferí mostrar y sorprender durante la experiencia del juego.

Para abrir el juego, hay que lanzar run.pyw, teniendo previamente descargados todos los archivos del repositorio.

Estructura del repositorio

  • Assets: Carpeta que contiene todos los activos del juego.

    • Audio: Contiene la música de cada escena y los sonidos fx del juego en formato .ogg.

    • Data: Contiene .db como base de datos de jugadores. La tabla almacena estilo y modelo de barco, último nivel y nivel máximo, último puntaje y puntaje máximo.

    • Fonts: Diferentes .ttf para los estilos de fuente proporcionados por el juego.

    • Images: Tiene las imágenes .png y .jpg tipo hojas de sprite.

    • Scripts: Aquí están todos los códigos .py que utiliza el juego para generar los datos del código del juego.

      • controller: Controla todas las escenas a través de sus bucles principales. Les da los atributos que a su vez recoge de la escena anterior.
      • database: Clase DataBase donde conecta los datos del juego a la base de datos a través de las funciones CRUD.
      • documents: Guarda los documentos credits, history y guide en forma de string, se muestran en el menú principal del juego.
      • enemies: Clase Enemy que estructura todas las características de los enemigos. Hay 3 tipos de IA: patrulleros, velocistas y kamikazes.
      • environment: Contiene las clases Foreground, Background, Farground, Planet y Portal. Se encargan de la ambientación y acompañan el movimiento del jugador.
      • manager: Importador de todas las cargas de música, sonidos e imágenes del juego.
      • obstacles: Clase Meteor que estructura toda la funcionalidad de los meteoros.
      • players: Clase Player que estructura todas las características y funcionalidades del jugador según el estilo que elijas. Hay 3 estilos: Daño, Defensa y Curación.
      • scenes: Contiene las clases Main, Menu, Game y Record que heredan de la clase Scene. Se encargan de controlar el comportamiento del juego en cada escena.
      • settings: Guarda todas las constantes del juego. Los ajustes se especifican desde aquí.
      • tools: Contiene las clases Timer, Sprite_sheet, Button, Board, Bar, Keyboard, Canvas, Icon, HealthBar y Screen_fade. Se utilizan como herramientas y componentes accesorios.
      • weapons: Contiene las clases Bullet, Missile y Explosion. Tipos de armas que puede utilizar cualquier personaje. Explosion es una extensión de Missile.
    • main: Archivo .py como lanzador alternativo del juego.

  • commits: Archivo .md registra todos los commits del repositorio.

  • requirements: Archivo .txt registra los requisitos para abrir el juego: pygame v2.0.2.

  • run: Archivo .pyw es el lanzador principal del juego.

Owner
Seven-z01
Seven-z01
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022