Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

Overview

patterns-finder

Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

This library offers the capabilities:

  • A set of predefined patterns with the most useful regex.
  • Extend the patterns, by adding user defined regex.
  • Find and extarct patterns from text
  • Pandas' Dataframe support.
  • Sort the results of extraction.
  • Summarize the results of extraction.
  • Display extractions by visualy rich text annotation.
  • Build complex extraction rules based on regex (in future release).

Installation

To install the last version of patterns-finder library, use pip:

pip install patterns-finder

Usage

Find a pattern in the text

Just import patterns, like emoji from patterns_finder.patterns.web, then you can use them to find pattern in text:

from patterns_finder.patterns.web import emoji, url, email 

emoji.find("the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 ")
# Output:
# [(18, 19, 'EMOJI', '🦊'), (49, 50, 'EMOJI', '🐶')]

url.find("The lazy 🐶 has a website https://lazy.dog.com ")
# Output:
# [(25, 45, 'URL', 'https://lazy.dog.com')]

email.find("[email protected] is the email of 🦊 ")
# Output:
# [(0, 19, 'EMAIL', '[email protected]')]

The results provided by the method find for each of pattern are in the form:

[(0, 19, 'EMAIL', '[email protected]')]
  ^  ^       ^          ^ 
  |  |       |          |
 Offset      |          └ Text matching the pattern
  |  |       └ Label of the pattern
  |  └ End index
  └ Start index in the text

Find multiple patterns in the text

To search for different patterns in the text we can use the method finder.patterns_in_text(text, patterns) as follows:

from patterns_finder import finder
from patterns_finder.patterns.web import emoji, url, color_hex
from patterns_finder.patterns.number import integer

patterns = [emoji, color_hex, integer]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output:
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (12, 14, 'INTEGER', '52'),
#  (15, 16, 'INTEGER', '2'),
#  (27, 28, 'INTEGER', '3')]

Find user defined patterns in the text

To define new pattern you can use any regex pattern that are supported by the regex and re packages of python. User defined patterns can be writen in the form of string regex pattern or tuple of string ('regex pattern', 'label').

patterns = [web.emoji, "quick|lazy", ("\\b[a-zA-Z]+\\b", "WORD") ]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output: 
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (4, 9, 'quick|lazy', 'quick'),
#  (44, 48, 'quick|lazy', 'lazy'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]

Sort extraxted patterns

By using the argument sort_by of the method finder.patterns_in_text we can sort the extraction accoring to different options:

  • sort_by=finder.START sorts the results by the start index in the text
patterns = [web.emoji, color_hex, ('\\b[a-zA-Z]+\\b', 'WORD') ]
finder.patterns_in_text(text, patterns, sort_by=finder.START)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.END sorts the results by the end index in the text
finder.patterns_in_text(text, patterns, sort_by=finder.END)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.LABEL sorts the results by pattern's label
finder.patterns_in_text(text, patterns, sort_by=finder.LABEL)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]
  • sort_by=finder.TEXT sorts the results by the extracted text
finder.patterns_in_text(text, patterns, sort_by=finder.TEXT)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (20, 26, 'WORD', 'jumped'),
#  (44, 48, 'WORD', 'lazy'),
#  (35, 39, 'WORD', 'over'),
#  (4, 9, 'WORD', 'quick'),
#  (0, 3, 'WORD', 'the'),
#  (40, 43, 'WORD', 'the'),
#  (29, 34, 'WORD', 'times'),
#  (49, 50, 'EMOJI', '🐶'),
#  (18, 19, 'EMOJI', '🦊')]

Summarize results of extraction

By using the argument summary_type, one can choose the desired form of output results.

  • summary_type=finder.NONE retruns a list with all details, without summarization.
patterns = [ color_hex, ('\\b[a-zA-Z]+\\b', 'WORD'), web.emoji ]
finder.patterns_in_text(text, patterns, summary_type=finder.NONE)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶')]
  • summary_type=finder.LABEL_TEXT_OFFSET returns a dictionary of patterns labels as keys, with the corresponding offsets and text as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT_OFFSET)
# Output:
# {
#  'COLOR_HEX': [[10, 17, '#A52A2A']],
#  'WORD': [[0, 3, 'the'], [4, 9, 'quick'], [20, 26, 'jumped'], [29, 34, 'times'], [35, 39, 'over'], [40, 43, 'the'], [44, 48, 'lazy']],
#  'EMOJI': [[18, 19, '🦊'], [49, 50, '🐶']]
# }
  • summary_type=finder.LABEL_TEXT returns a dictionary of patterns labels as keys, with the corresponding text (without offset) as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT)
# Output:
# {
#  'COLOR_HEX': ['#A52A2A'],
#  'WORD': ['the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy'],
#  'EMOJI': ['🦊', '🐶']
# }
  • summary_type=finder.TEXT_ONLY returns a list of the extracted text only.
finder.patterns_in_text(text, patterns, summary_type=finder.TEXT_ONLY)
# Output:
# ['#A52A2A', 'the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy', '🦊', '🐶']

Extract patterns from Pandas DataFrame

This package provides the capability to extract patterns from Pandas' DataFrame easily, by using the method finder.patterns_in_df(df, input_col, output_col, patterns, ...).

from patterns_finder import finder
from patterns_finder.patterns import web
import pandas as pd

patterns = [web.email, web.emoji, web.url]

df = pd.DataFrame(data={
    'text': ["the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶",
                    "[email protected] is the email of 🦊",
                    "The lazy 🐶 has a website https://lazy.dog.com"],
    })

finder.patterns_in_df(df, "text", "extraction", patterns, summary_type=finder.LABEL_TEXT)
# Output:
# |    | text                                                 | extraction                                          |
# |---:|:-----------------------------------------------------|:----------------------------------------------------|
# |  0 | the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 | {'EMOJI': ['🦊', '🐶']}                            |
# |  1 | [email protected] is the email of 🦊               | {'EMAIL': ['[email protected]'], 'EMOJI': ['🦊']} |
# |  2 | The lazy 🐶 has a website https://lazy.dog.com       | {'EMOJI': ['🐶'], 'URL': ['https://lazy.dog.com']}  |

The method finder.patterns_in_df have also the arguments summary_type and sort_by.

List of all predefined patterns

  • Web
from patterns_finder.web import email, url, uri, mailto, html_link, sql, color_hex, copyright, alphanumeric, emoji, username, quotation, ipv4, ipv6
  • Phone
from patterns_finder.phone import generic, uk, us
  • Credit Cards
from patterns_finder.credit_card import generic, visa, mastercard, discover, american_express
  • Numbers
from patterns_finder.number import integer, float, scientific, hexadecimal, percent, roman
  • Currency
from patterns_finder.currency import monetary, symbol, code, name
  • Languages
from patterns_finder.language import english, french, spanish, arabic, hebrew, turkish, russian, german, chinese, greek, japanese, hindi, bangali, armenian, swedish, portoguese, balinese, georgian
  • Time and Date
from patterns_finder.time_date import time, date, year
  • Postal Code
from patterns_finder.postal_code import us, canada, uk, france, spain, switzerland, brazilian

Contact

Please email your questions or comments to me.

You might also like...
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Comments
  • Add Support for Patents patterns

    Add Support for Patents patterns

    Support Patent patterns w/ first implementation to support Patents globally

    Example usage:

    from patterns_finder.patterns.patents import global_patent
    global_patent.find("Patent US5960368A is titled Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials ")
    # Output:
    # [(7, 16, 'PATENT', 'US5960368A')]
    
    

    requesting permission to add the patterns :p

    opened by mahzy 0
Releases(1.0.1)
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023