Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

Overview

patterns-finder

Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

This library offers the capabilities:

  • A set of predefined patterns with the most useful regex.
  • Extend the patterns, by adding user defined regex.
  • Find and extarct patterns from text
  • Pandas' Dataframe support.
  • Sort the results of extraction.
  • Summarize the results of extraction.
  • Display extractions by visualy rich text annotation.
  • Build complex extraction rules based on regex (in future release).

Installation

To install the last version of patterns-finder library, use pip:

pip install patterns-finder

Usage

Find a pattern in the text

Just import patterns, like emoji from patterns_finder.patterns.web, then you can use them to find pattern in text:

from patterns_finder.patterns.web import emoji, url, email 

emoji.find("the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 ")
# Output:
# [(18, 19, 'EMOJI', '🦊'), (49, 50, 'EMOJI', '🐶')]

url.find("The lazy 🐶 has a website https://lazy.dog.com ")
# Output:
# [(25, 45, 'URL', 'https://lazy.dog.com')]

email.find("[email protected] is the email of 🦊 ")
# Output:
# [(0, 19, 'EMAIL', '[email protected]')]

The results provided by the method find for each of pattern are in the form:

[(0, 19, 'EMAIL', '[email protected]')]
  ^  ^       ^          ^ 
  |  |       |          |
 Offset      |          └ Text matching the pattern
  |  |       └ Label of the pattern
  |  └ End index
  └ Start index in the text

Find multiple patterns in the text

To search for different patterns in the text we can use the method finder.patterns_in_text(text, patterns) as follows:

from patterns_finder import finder
from patterns_finder.patterns.web import emoji, url, color_hex
from patterns_finder.patterns.number import integer

patterns = [emoji, color_hex, integer]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output:
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (12, 14, 'INTEGER', '52'),
#  (15, 16, 'INTEGER', '2'),
#  (27, 28, 'INTEGER', '3')]

Find user defined patterns in the text

To define new pattern you can use any regex pattern that are supported by the regex and re packages of python. User defined patterns can be writen in the form of string regex pattern or tuple of string ('regex pattern', 'label').

patterns = [web.emoji, "quick|lazy", ("\\b[a-zA-Z]+\\b", "WORD") ]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output: 
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (4, 9, 'quick|lazy', 'quick'),
#  (44, 48, 'quick|lazy', 'lazy'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]

Sort extraxted patterns

By using the argument sort_by of the method finder.patterns_in_text we can sort the extraction accoring to different options:

  • sort_by=finder.START sorts the results by the start index in the text
patterns = [web.emoji, color_hex, ('\\b[a-zA-Z]+\\b', 'WORD') ]
finder.patterns_in_text(text, patterns, sort_by=finder.START)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.END sorts the results by the end index in the text
finder.patterns_in_text(text, patterns, sort_by=finder.END)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.LABEL sorts the results by pattern's label
finder.patterns_in_text(text, patterns, sort_by=finder.LABEL)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]
  • sort_by=finder.TEXT sorts the results by the extracted text
finder.patterns_in_text(text, patterns, sort_by=finder.TEXT)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (20, 26, 'WORD', 'jumped'),
#  (44, 48, 'WORD', 'lazy'),
#  (35, 39, 'WORD', 'over'),
#  (4, 9, 'WORD', 'quick'),
#  (0, 3, 'WORD', 'the'),
#  (40, 43, 'WORD', 'the'),
#  (29, 34, 'WORD', 'times'),
#  (49, 50, 'EMOJI', '🐶'),
#  (18, 19, 'EMOJI', '🦊')]

Summarize results of extraction

By using the argument summary_type, one can choose the desired form of output results.

  • summary_type=finder.NONE retruns a list with all details, without summarization.
patterns = [ color_hex, ('\\b[a-zA-Z]+\\b', 'WORD'), web.emoji ]
finder.patterns_in_text(text, patterns, summary_type=finder.NONE)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶')]
  • summary_type=finder.LABEL_TEXT_OFFSET returns a dictionary of patterns labels as keys, with the corresponding offsets and text as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT_OFFSET)
# Output:
# {
#  'COLOR_HEX': [[10, 17, '#A52A2A']],
#  'WORD': [[0, 3, 'the'], [4, 9, 'quick'], [20, 26, 'jumped'], [29, 34, 'times'], [35, 39, 'over'], [40, 43, 'the'], [44, 48, 'lazy']],
#  'EMOJI': [[18, 19, '🦊'], [49, 50, '🐶']]
# }
  • summary_type=finder.LABEL_TEXT returns a dictionary of patterns labels as keys, with the corresponding text (without offset) as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT)
# Output:
# {
#  'COLOR_HEX': ['#A52A2A'],
#  'WORD': ['the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy'],
#  'EMOJI': ['🦊', '🐶']
# }
  • summary_type=finder.TEXT_ONLY returns a list of the extracted text only.
finder.patterns_in_text(text, patterns, summary_type=finder.TEXT_ONLY)
# Output:
# ['#A52A2A', 'the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy', '🦊', '🐶']

Extract patterns from Pandas DataFrame

This package provides the capability to extract patterns from Pandas' DataFrame easily, by using the method finder.patterns_in_df(df, input_col, output_col, patterns, ...).

from patterns_finder import finder
from patterns_finder.patterns import web
import pandas as pd

patterns = [web.email, web.emoji, web.url]

df = pd.DataFrame(data={
    'text': ["the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶",
                    "[email protected] is the email of 🦊",
                    "The lazy 🐶 has a website https://lazy.dog.com"],
    })

finder.patterns_in_df(df, "text", "extraction", patterns, summary_type=finder.LABEL_TEXT)
# Output:
# |    | text                                                 | extraction                                          |
# |---:|:-----------------------------------------------------|:----------------------------------------------------|
# |  0 | the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 | {'EMOJI': ['🦊', '🐶']}                            |
# |  1 | [email protected] is the email of 🦊               | {'EMAIL': ['[email protected]'], 'EMOJI': ['🦊']} |
# |  2 | The lazy 🐶 has a website https://lazy.dog.com       | {'EMOJI': ['🐶'], 'URL': ['https://lazy.dog.com']}  |

The method finder.patterns_in_df have also the arguments summary_type and sort_by.

List of all predefined patterns

  • Web
from patterns_finder.web import email, url, uri, mailto, html_link, sql, color_hex, copyright, alphanumeric, emoji, username, quotation, ipv4, ipv6
  • Phone
from patterns_finder.phone import generic, uk, us
  • Credit Cards
from patterns_finder.credit_card import generic, visa, mastercard, discover, american_express
  • Numbers
from patterns_finder.number import integer, float, scientific, hexadecimal, percent, roman
  • Currency
from patterns_finder.currency import monetary, symbol, code, name
  • Languages
from patterns_finder.language import english, french, spanish, arabic, hebrew, turkish, russian, german, chinese, greek, japanese, hindi, bangali, armenian, swedish, portoguese, balinese, georgian
  • Time and Date
from patterns_finder.time_date import time, date, year
  • Postal Code
from patterns_finder.postal_code import us, canada, uk, france, spain, switzerland, brazilian

Contact

Please email your questions or comments to me.

You might also like...
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Comments
  • Add Support for Patents patterns

    Add Support for Patents patterns

    Support Patent patterns w/ first implementation to support Patents globally

    Example usage:

    from patterns_finder.patterns.patents import global_patent
    global_patent.find("Patent US5960368A is titled Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials ")
    # Output:
    # [(7, 16, 'PATENT', 'US5960368A')]
    
    

    requesting permission to add the patterns :p

    opened by mahzy 0
Releases(1.0.1)
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022