Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

Overview

patterns-finder

Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

This library offers the capabilities:

  • A set of predefined patterns with the most useful regex.
  • Extend the patterns, by adding user defined regex.
  • Find and extarct patterns from text
  • Pandas' Dataframe support.
  • Sort the results of extraction.
  • Summarize the results of extraction.
  • Display extractions by visualy rich text annotation.
  • Build complex extraction rules based on regex (in future release).

Installation

To install the last version of patterns-finder library, use pip:

pip install patterns-finder

Usage

Find a pattern in the text

Just import patterns, like emoji from patterns_finder.patterns.web, then you can use them to find pattern in text:

from patterns_finder.patterns.web import emoji, url, email 

emoji.find("the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 ")
# Output:
# [(18, 19, 'EMOJI', '🦊'), (49, 50, 'EMOJI', '🐶')]

url.find("The lazy 🐶 has a website https://lazy.dog.com ")
# Output:
# [(25, 45, 'URL', 'https://lazy.dog.com')]

email.find("[email protected] is the email of 🦊 ")
# Output:
# [(0, 19, 'EMAIL', '[email protected]')]

The results provided by the method find for each of pattern are in the form:

[(0, 19, 'EMAIL', '[email protected]')]
  ^  ^       ^          ^ 
  |  |       |          |
 Offset      |          └ Text matching the pattern
  |  |       └ Label of the pattern
  |  └ End index
  └ Start index in the text

Find multiple patterns in the text

To search for different patterns in the text we can use the method finder.patterns_in_text(text, patterns) as follows:

from patterns_finder import finder
from patterns_finder.patterns.web import emoji, url, color_hex
from patterns_finder.patterns.number import integer

patterns = [emoji, color_hex, integer]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output:
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (12, 14, 'INTEGER', '52'),
#  (15, 16, 'INTEGER', '2'),
#  (27, 28, 'INTEGER', '3')]

Find user defined patterns in the text

To define new pattern you can use any regex pattern that are supported by the regex and re packages of python. User defined patterns can be writen in the form of string regex pattern or tuple of string ('regex pattern', 'label').

patterns = [web.emoji, "quick|lazy", ("\\b[a-zA-Z]+\\b", "WORD") ]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output: 
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (4, 9, 'quick|lazy', 'quick'),
#  (44, 48, 'quick|lazy', 'lazy'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]

Sort extraxted patterns

By using the argument sort_by of the method finder.patterns_in_text we can sort the extraction accoring to different options:

  • sort_by=finder.START sorts the results by the start index in the text
patterns = [web.emoji, color_hex, ('\\b[a-zA-Z]+\\b', 'WORD') ]
finder.patterns_in_text(text, patterns, sort_by=finder.START)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.END sorts the results by the end index in the text
finder.patterns_in_text(text, patterns, sort_by=finder.END)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.LABEL sorts the results by pattern's label
finder.patterns_in_text(text, patterns, sort_by=finder.LABEL)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]
  • sort_by=finder.TEXT sorts the results by the extracted text
finder.patterns_in_text(text, patterns, sort_by=finder.TEXT)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (20, 26, 'WORD', 'jumped'),
#  (44, 48, 'WORD', 'lazy'),
#  (35, 39, 'WORD', 'over'),
#  (4, 9, 'WORD', 'quick'),
#  (0, 3, 'WORD', 'the'),
#  (40, 43, 'WORD', 'the'),
#  (29, 34, 'WORD', 'times'),
#  (49, 50, 'EMOJI', '🐶'),
#  (18, 19, 'EMOJI', '🦊')]

Summarize results of extraction

By using the argument summary_type, one can choose the desired form of output results.

  • summary_type=finder.NONE retruns a list with all details, without summarization.
patterns = [ color_hex, ('\\b[a-zA-Z]+\\b', 'WORD'), web.emoji ]
finder.patterns_in_text(text, patterns, summary_type=finder.NONE)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶')]
  • summary_type=finder.LABEL_TEXT_OFFSET returns a dictionary of patterns labels as keys, with the corresponding offsets and text as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT_OFFSET)
# Output:
# {
#  'COLOR_HEX': [[10, 17, '#A52A2A']],
#  'WORD': [[0, 3, 'the'], [4, 9, 'quick'], [20, 26, 'jumped'], [29, 34, 'times'], [35, 39, 'over'], [40, 43, 'the'], [44, 48, 'lazy']],
#  'EMOJI': [[18, 19, '🦊'], [49, 50, '🐶']]
# }
  • summary_type=finder.LABEL_TEXT returns a dictionary of patterns labels as keys, with the corresponding text (without offset) as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT)
# Output:
# {
#  'COLOR_HEX': ['#A52A2A'],
#  'WORD': ['the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy'],
#  'EMOJI': ['🦊', '🐶']
# }
  • summary_type=finder.TEXT_ONLY returns a list of the extracted text only.
finder.patterns_in_text(text, patterns, summary_type=finder.TEXT_ONLY)
# Output:
# ['#A52A2A', 'the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy', '🦊', '🐶']

Extract patterns from Pandas DataFrame

This package provides the capability to extract patterns from Pandas' DataFrame easily, by using the method finder.patterns_in_df(df, input_col, output_col, patterns, ...).

from patterns_finder import finder
from patterns_finder.patterns import web
import pandas as pd

patterns = [web.email, web.emoji, web.url]

df = pd.DataFrame(data={
    'text': ["the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶",
                    "[email protected] is the email of 🦊",
                    "The lazy 🐶 has a website https://lazy.dog.com"],
    })

finder.patterns_in_df(df, "text", "extraction", patterns, summary_type=finder.LABEL_TEXT)
# Output:
# |    | text                                                 | extraction                                          |
# |---:|:-----------------------------------------------------|:----------------------------------------------------|
# |  0 | the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 | {'EMOJI': ['🦊', '🐶']}                            |
# |  1 | [email protected] is the email of 🦊               | {'EMAIL': ['[email protected]'], 'EMOJI': ['🦊']} |
# |  2 | The lazy 🐶 has a website https://lazy.dog.com       | {'EMOJI': ['🐶'], 'URL': ['https://lazy.dog.com']}  |

The method finder.patterns_in_df have also the arguments summary_type and sort_by.

List of all predefined patterns

  • Web
from patterns_finder.web import email, url, uri, mailto, html_link, sql, color_hex, copyright, alphanumeric, emoji, username, quotation, ipv4, ipv6
  • Phone
from patterns_finder.phone import generic, uk, us
  • Credit Cards
from patterns_finder.credit_card import generic, visa, mastercard, discover, american_express
  • Numbers
from patterns_finder.number import integer, float, scientific, hexadecimal, percent, roman
  • Currency
from patterns_finder.currency import monetary, symbol, code, name
  • Languages
from patterns_finder.language import english, french, spanish, arabic, hebrew, turkish, russian, german, chinese, greek, japanese, hindi, bangali, armenian, swedish, portoguese, balinese, georgian
  • Time and Date
from patterns_finder.time_date import time, date, year
  • Postal Code
from patterns_finder.postal_code import us, canada, uk, france, spain, switzerland, brazilian

Contact

Please email your questions or comments to me.

You might also like...
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Comments
  • Add Support for Patents patterns

    Add Support for Patents patterns

    Support Patent patterns w/ first implementation to support Patents globally

    Example usage:

    from patterns_finder.patterns.patents import global_patent
    global_patent.find("Patent US5960368A is titled Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials ")
    # Output:
    # [(7, 16, 'PATENT', 'US5960368A')]
    
    

    requesting permission to add the patterns :p

    opened by mahzy 0
Releases(1.0.1)
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022