CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

Overview

CrossNER

License: MIT

NEW (2021/1/5): Fixed several annotation errors (thanks for the help from Youliang Yuan).

CrossNER: Evaluating Cross-Domain Named Entity Recognition (Accepted in AAAI-2021) [PDF]

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five domains. We hope that our collected dataset (CrossNER) will catalyze research in the NER domain adaptation area.

You can have a quick overview of this paper through our blog. If you use the dataset in an academic paper, please consider citing the following paper.

@article{liu2020crossner,
      title={CrossNER: Evaluating Cross-Domain Named Entity Recognition}, 
      author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung},
      year={2020},
      eprint={2012.04373},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

The CrossNER Dataset

Data Statistics and Entity Categories

Data statistics of unlabeled domain corpora, labeled NER samples and entity categories for each domain.

Data Examples

Data examples for the collected five domains. Each domain has its specialized entity categories.

Domain Overlaps

Vocabulary overlaps between domains (%). Reuters denotes the Reuters News domain, “Science” denotes the natural science domain and “Litera.” denotes the literature domain.

Download

Labeled NER data: Labeled NER data for the five target domains (Politics, Science, Music, Literature, and AI) and the source domain (Reuters News from CoNLL-2003 shared task) can be found in ner_data folder.

Unlabeled Corpora: Unlabeled domain-related corpora (domain-level, entity-level, task-level and integrated) for the five target domains can be downloaded here.

Dependency

  • Install PyTorch (Tested in PyTorch 1.2.0 and Python 3.6)
  • Install transformers (Tested in transformers 3.0.2)

Domain-Adaptive Pre-Training (DAPT)

Configurations

  • --train_data_file: The file path of the pre-training corpus.
  • --output_dir: The output directory where the pre-trained model is saved.
  • --model_name_or_path: Continue pre-training on which model.
❱❱❱ python run_language_modeling.py --output_dir=politics_spanlevel_integrated --model_type=bert --model_name_or_path=bert-base-cased --do_train --train_data_file=corpus/politics_integrated.txt --mlm

This example is for span-level pre-training using integrated corpus in the politics domain. This code is modified based on run_language_modeling.py from huggingface transformers (3.0.2).

Baselines

Configurations

  • --tgt_dm: Target domain that the model needs to adapt to.
  • --conll: Using source domain data (News domain from CoNLL 2003) for pre-training.
  • --joint: Jointly train using source and target domain data.
  • --num_tag: Number of label types for the target domain (we put the details in src/dataloader.py).
  • --ckpt: Checkpoint path to load the pre-trained model.
  • --emb_file: Word-level embeddings file path.

Directly Fine-tune

Directly fine-tune the pre-trained model (span-level + integrated corpus) to the target domain (politics domain).

❱❱❱ python main.py --exp_name politics_directly_finetune --exp_id 1 --num_tag 19 --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics --batch_size 16

Jointly Train

Initialize the model with the pre-trained model (span-level + integrated corpus). Then, jointly train the model with the source and target (politics) domain data.

❱❱❱ python main.py --exp_name politics_jointly_train --exp_id 1 --num_tag 19 --conll --joint --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics

Pre-train then Fine-tune

Initialize the model with the pre-trained model (span-level + integrated corpus). Then fine-tune it to the target (politics) domain after pre-training on the source domain data.

❱❱❱ python main.py --exp_name politics_pretrain_then_finetune --exp_id 1 --num_tag 19 --conll --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics --batch_size 16

BiLSTM-CRF (Lample et al. 2016)

Jointly train BiLSTM-CRF (word+Char level) on the source domain and target (politics) domain. (we use glove.6B.300d.txt for word-level embeddings and torchtext.vocab.CharNGram() for character-level embeddings).

❱❱❱ python main.py --exp_name politics_bilstm_wordchar --exp_id 1 --num_tag 19 --tgt_dm politics --bilstm --dropout 0.3 --lr 1e-3 --usechar --emb_dim 400

Coach (Liu et al. 2020)

Jointly train Coach (word+Char level) on the source domain and target (politics) domain.

❱❱❱ python main.py --exp_name politics_coach_wordchar --exp_id 1 --num_tag 3 --entity_enc_hidden_dim 200 --tgt_dm politics --coach --dropout 0.5 --lr 1e-4 --usechar --emb_dim 400

Other Notes

  • In the aforementioned baselines, we provide running commands for the politics target domain as an example. The running commands for other target domains can be found in the run.sh file.

Bug Report

Owner
Zihan Liu
Ph.D. Candidate at HKUST CAiRE. I work on natural language processing, multilingual, dialogue, cross-domain adaptation.
Zihan Liu
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022