TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Overview

基于TaCL-BERT的中文命名实体识别及中文分词

Paper: TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

论文主Github repo: https://github.com/yxuansu/TaCL

引用:

如果我们提供的资源对你有帮助,请考虑引用我们的文章。

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

环境配置

python version == 3.8
pip install -r requirements.txt

模型结构

Chinese TaCL BERT + CRF

Huggingface模型:

Model Name Model Address
Chinese (cambridgeltl/tacl-bert-base-chinese) link

使用范例:

实验

一、实验数据集

(1). 命名实体识别: (1) MSRA (2) OntoNotes (3) Resume (4) Weibo

(2). 中文分词: (1) PKU (2) CityU (3) AS

二、下载数据集

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

三、下载训练好的模型

chmod +x ./download_checkpoints.sh
./download_checkpoints.sh

四、使用训练好的模型进行inference

cd ./sh_folder/inference/
chmod +x ./inference_{}.sh
./inference_{}.sh

对于不同的数据集{}的取值为['msra', 'ontonotes', 'weibo', 'resume', 'pku', 'cityu', 'as'],相关参数的含义为:

--saved_ckpt_path: 训练好的模型位置
--train_path: 训练集数据路径
--dev_path: 验证集数据路径
--test_path: 测试集数据路径
--label_path: 数据标签路径
--batch_size: inference时的batch size

五、测试集模型结果

使用提供的模型进行inference后,可以得到如下结果。

Dataset Precision Recall F1
MSRA 95.41 95.47 95.44
OntoNotes 81.88 82.98 82.42
Resume 96.48 96.42 96.45
Weibo 68.40 70.73 69.54
PKU 97.04 96.46 96.75
CityU 98.16 98.19 98.18
AS 96.51 96.99 96.75

六、从头训练一个模型

cd ./sh_folder/train/
chmod +x ./{}.sh
./{}.sh

对于不同的数据集{}的取值为['msra', 'ontonotes', 'weibo', 'resume', 'pku', 'cityu', 'as'],相关参数的含义为:

--model_name: 中文TaCL BERT的模型名称(cambridgeltl/tacl-bert-base-chinese)
--train_path: 训练集数据路径
--dev_path: 验证集数据路径
--test_path: 测试集数据路径
--label_path: 数据标签路径
--learning_rate: 学习率
--number_of_gpu: 可使用的GPU数量
--number_of_runs: 重复试验次数
--save_path_prefix: 模型存储路径

[Note 1] 我们没有对模型进行任何和学习率调参,2e-5只是默认值。通过调整学习率也许可以获得更好的结果。

[Note 2] 实际的batch size等于gradient_accumulation_steps x number_of_gpu x batch_size_per_gpu。我们推荐将其设置为128。

Inference: 使用在./sh_folder/inference/路径中的sh进行inference。将--saved_ckpt_path设置为自己重新训练好的模型的路径。

交互式使用训练好的模型进行inference

以下我们使用MSRA数据集作为范例。

(使用以下代码前,请先下载我们提供的训练好的模型以及数据集。具体的指导请见以上章节)

# 载入数据
from dataclass import Data
from transformers import AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-chinese'
tokenizer = AutoTokenizer.from_pretrained(model_name)
data_path = r'./benchmark_data/NER/MSRANER/MSRA.test.char.txt'
label_path = r'./benchmark_data/NER/MSRANER/MSRA_NER_Label.txt'
max_len = 128
data = Data(tokenizer, data_path, data_path, data_path, label_path, max_len)

# 载入模型
import torch
from model import NERModel
model = NERModel(model_name, data.num_class)
ckpt_path = r'./pretrained_ckpt/msra/msra_ckpt'
model_ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
model_parameters = model_ckpt['model']
model.load_state_dict(model_parameters)
model.eval()

# 提供输入
text = "中 共 中 央 致 中 国 致 公 党 十 一 大 的 贺 词"
text = "[CLS] " + text + " [SEP]"
tokens = tokenizer.tokenize(text)
# process token input
input_id = tokenizer.convert_tokens_to_ids(tokens)
input_id = torch.LongTensor(input_id).view(1, -1)
attn_mask = ~input_id.eq(data.pad_idx)
tgt_mask = [1.0] * len(tokens)
tgt_mask = torch.tensor(tgt_mask, dtype=torch.uint8).contiguous().view(1,-1)

# 使用模型进行解码
x = model.decode(input_id, attn_mask, tgt_mask)[0][1:-1] # remove [CLS] and [SEP] tokens.
res = ' '.join([data.id2label_dict[tag] for tag in x])
print (res)

# 模型输出结果: 
# B-NT M-NT M-NT E-NT O B-NT M-NT M-NT M-NT M-NT M-NT M-NT E-NT O O O
# 标准预测结果: 
# B-NT M-NT M-NT E-NT O B-NT M-NT M-NT M-NT M-NT M-NT M-NT E-NT O O O

联系

如果有任何的问题,以下是我的联系方式(ys484 at outlook dot com)。

Owner
Yixuan Su
Yixuan Su
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023