Global Rhythm Style Transfer Without Text Transcriptions

Overview

Global Prosody Style Transfer Without Text Transcriptions

This repository provides a PyTorch implementation of AutoPST, which enables unsupervised global prosody conversion without text transcriptions.

This is a short video that explains the main concepts of our work. If you find this work useful and use it in your research, please consider citing our paper.

SpeechSplit

@InProceedings{pmlr-v139-qian21b,
  title = 	 {Global Prosody Style Transfer Without Text Transcriptions},
  author =       {Qian, Kaizhi and Zhang, Yang and Chang, Shiyu and Xiong, Jinjun and Gan, Chuang and Cox, David and Hasegawa-Johnson, Mark},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {8650--8660},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
  url = 	 {http://proceedings.mlr.press/v139/qian21b.html}
}

Audio Demo

The audio demo for AutoPST can be found here

Dependencies

  • Python 3.6
  • Numpy
  • Scipy
  • PyTorch == v1.6.0
  • librosa
  • pysptk
  • soundfile
  • wavenet_vocoder pip install wavenet_vocoder==0.1.1 for more information, please refer to https://github.com/r9y9/wavenet_vocoder

To Run Demo

Download pre-trained models to assets

Download the same WaveNet vocoder model as in AutoVC to assets

Please refer to AutoVC if you have any problems with the vocoder part, because they share the same vocoder scripts.

Run demo.ipynb

To Train

Download training data to assets. The provided training data is very small for code verification purpose only. Please use the scripts to prepare your own data for training.

  1. Prepare training data: python prepare_train_data.py

  2. Train 1st Stage: python main_1.py

  3. Train 2nd Stage: python main_2.py

Final Words

This project is part of an ongoing research. We hope this repo is useful for your research. If you need any help or have any suggestions on improving the framework, please raise an issue and we will do our best to get back to you as soon as possible.

Owner
Kaizhi Qian
Kaizhi Qian
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022