Athena is an open-source implementation of end-to-end speech processing engine.

Related tags

Text Data & NLPathena
Overview

Athena

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing. To make speech processing available to everyone, we're also releasing example implementation and recipe on some opensource dataset for various tasks (Automatic Speech Recognition, Speech Synthesis, Voice Conversion, Speaker Recognition, etc).

All of our models are implemented in Tensorflow>=2.0.1. For ease of use, we provide Kaldi-free pythonic feature extractor with Athena_transform.

1) Table of Contents

2) Key Features

  • Hybrid Attention/CTC based end-to-end ASR
  • Speech-Transformer
  • Unsupervised pre-training
  • Multi-GPU training on one machine or across multiple machines with Horovod
  • WFST creation and WFST-based decoding
  • Deployment with Tensorflow C++

3) Installation

We provide the installation steps of tensorflow 2.3.1. The corresponding linux system environment is : cuda:10.1, ubuntu18.04. If your server installed docker, you can pull docker image : docker pull nvidia/cuda:10.1-devel-ubuntu18.04, and installing the python requirements: apt update && apt install python3 && apt install python3-venv && apt install python3-pip. We also provide a script include all installation steps:

# clone athena package,and run one step installation
git clone https://github.com/athena-team/athena.git
cd athena
bash one_installation.sh

If you want to use one_installation.sh, you can ignore the following steps!!!

3.1) Clone athena package

# In this step,you must install git( sudo apt-get update && sudo apt-get install git)
git clone https://github.com/athena-team/athena.git

3.2) Check system level installations

To check the base prerequisites for Athena

cd athena
bash check_source.sh

3.3) Creating a virtual environment [Optional]

This project has only been tested on Python 3. We highly recommend creating a virtual environment and installing the python requirements there.

# Setting up virtual environment
apt-get install python3-venv
python3 -m venv venv_athena
source venv_athena/bin/activate

3.4) Install tensorflow backend

For more information, you can checkout the tensorflow website.

# we highly recommend firstly update pip, if you find tensorflow download very slow, you can add "-i https://pypi.tuna.tsinghua.edu.cn/simple", eg: pip install tensorflow==2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install --upgrade pip
pip install tensorflow==2.3.1

3.5) Install horovod for multiple-device training [Optional]

For multiple GPU/CPU training You have to install the horovod, you can find out more information from the horovod website. We provide a installation steps as reference,you can run the script in tools/.

cd athena
bash tools/install_horovod.sh

3.6) Install sph2pipe, spm, kenlm, sclite for ASR Tasks [Optional]

These packages are usually required for ASR tasks, we assume they have been installed when running the recipe for ASR tasks. You can find installation scripts of them in tools/, and a general installation script as reference:

cd athena
bash tools/install_tools_for_asr.sh

3.7) Install pydecoder for WFST decoding [Optional]

For WFST decoding You have to install pydecoder, installation guide for pydecoder can be found athena-decoder website

3.8) Install athena package

cd athena
pip install -r requirements.txt
python setup.py bdist_wheel sdist
python -m pip install --ignore-installed dist/athena-0.1.0*.whl
  • Once athena is successfully installed, you should do source tools/env.sh firstly before doing other things.

3.9) Test your installation

  • On a single cpu/gpu
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
python athena/main.py examples/translate/spa-eng-example/transformer.json
  • On multiple cpu/gpu in one machine (you should make sure your hovorod is successfully installed)
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/translate/spa-eng-example/transformer.json

Notes

  • If you see errors such as ERROR: Cannot uninstall 'wrapt' while installing TensorFlow, try updating it using command conda update wrapt. Same for similar dependencies such as entrypoints, llvmlite and so on.
  • You may want to make sure you have g++ version 7 or above to make sure you can successfully install TensorFlow.

4) Training

We will use ASR task TIMIT as an example to walk you through the whole training process. The recipe for this tutorial can be found at examples/asr/timit/run_101.sh.

4.1) Prepare the data

The data for TIMIT can be found here or here. First, we need to download the data and place it at examples/asr/timit/data/TIMIT. Then we will run the following scripts, which will do some data precessing and generate data csv for train, dev and test set of TIMIT.

mkdir -p examples/asr/timit/data
python examples/asr/timit/local/prepare_data.py examples/asr/timit/data/TIMIT examples/asr/timit/data

Below is an example csv we generated, it contains the absolute path of input audio, its length, its transcript and its speaker

wav_filename	wav_length_ms	transcript	speaker
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI1456.WAV	3065	sil dh iy z eh er er vcl g ae sh vcl b ah vcl b ax sh epi m ey cl k hh ay l ix f ah ng cl sh epi en el th er m el vcl b eh r ix er z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX286.WAV	3283	sil ih n eh v r ih m ey vcl jh er cl k l ow v er l iy f cl t r ae f ix cl k s ah m cl t ay m z vcl g eh cl s vcl b ae cl t ah cl p sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX196.WAV	1740	sil hh aw vcl d uw ao r sh cl ch er zh epi m ey cl p er l vcl d z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX106.WAV	2214	sil eh hh y uw vcl jh cl t ae cl p ix sh cl t r ix hh ah ng ix n er hh ah l w ey sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX16.WAV	1926	sil ey r ow l el v w ay er l ey n ih er dh ax w ao l sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI2086.WAV	2745	sil ae vcl b s el uw sh en f ao r hh ix z l ay hh sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX376.WAV	2464	sil w ih m ix n m ey n eh v er vcl b ix cl k ah ng cl k ax m cl p l iy cl l iy cl k w el cl t ax m eh n sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI826.WAV	3596	sil k ao sh en cl k en cl t ih n y uw s ix vcl m ih n ax sh cl t r ey sh en ix z epi n aa vcl r eh cl k m eh n d ix f ax l ae cl t ey dx ng cl k aw z sil	MCLM0

4.2) Setting the Configuration File

All of our training/ inference configurations are written in config.json. Below is an example configuration file with comments to help you understand.

{
  "batch_size":16,
  "num_epochs":20,
  "sorta_epoch":1,  # keep batches sorted for sorta_epoch, this helps with the convergence of models
  "ckpt":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/",
  "summary_dir":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/event",

  "solver_gpu":[0],
  "solver_config":{
    "clip_norm":100,  # clip gradients into a norm of 100
    "log_interval":10,  # print logs for log_interval steps
    "enable_tf_function":true  # enable tf_function to make training faster
  },

  "model":"mtl_transformer_ctc",  # the type of model this training uses, it's a multi-task transformer based model
  "num_classes": null,
  "pretrained_model": null,
  "model_config":{
    "model":"speech_transformer",
    "model_config":{
      "return_encoder_output":true,  # whether to return encoder only or encoder + decoder
      "num_filters":256,  # dimension of cnn filter
      "d_model":256,  # dimension of transformer
      "num_heads":8,  # heads of transformer
      "num_encoder_layers":9,
      "num_decoder_layers":3,
      "dff":1024,  # dimension of feed forward layer
      "rate":0.2,  # dropout rate for transformer
      "label_smoothing_rate":0.0,  # label smoothing rate for output logits
      "schedual_sampling_rate":1.0  # scheduled sampling rate for decoder
    },
    "mtl_weight":0.5
  },

  "inference_config":{
    "decoder_type":"beam_search_decoder",  # use beam search instead of argmax
    "beam_size":10,
    "ctc_weight":0.0,  # weight for ctc joint decoding
    "model_avg_num":10  # averaging checkpoints gives better results than using single checkpoint with best loss/ metrics
  },

  "optimizer":"warmup_adam",
  "optimizer_config":{  # configs for warmup optimizer
    "d_model":256,
    "warmup_steps":4000,
    "k":1
  },


  "dataset_builder": "speech_recognition_dataset",
  "num_data_threads": 1,
  "trainset_config":{
    "data_csv": "examples/asr/timit/data/train.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},  # config for feature extraction
    "cmvn_file":"examples/asr/timit/data/cmvn",  # mean and variance of FBank
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},  # vocab list
    "speed_permutation": [0.9, 1.0, 1.1],  # use speed perturbation to increase data diversitty
    "input_length_range":[10, 8000]  # range of audio input length
  },
  "devset_config":{
    "data_csv": "examples/asr/timit/data/dev.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},
    "input_length_range":[10, 8000]
  },
  "testset_config":{
    "data_csv": "examples/asr/timit/data/test.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"}
  }
}

To get state-of-the-art models, we usually need to train for more epochs and use ctc joint decoding with language model. These are omitted for to make this tutorial easier to understand.

4.3) Data normalization

Data normalization is important for the convergence of neural network models. With the generated csv file, we will compute the cmvn file like this

python athena/cmvn_main.py examples/asr/$dataset_name/configs/mpc.json examples/asr/$dataset_name/data/all.csv

The generated cmvn files will be found at examples/asr/timit/data/cmvn.

4.4) Storage Features Offline

This step is optional. athena/tools/storage_features_offline.py will be a good choice to store the features of training data offline in advance if you want to save the time of data processing. In subsequent training, kaldiio can be used to read them directly. The specific operation is:

python athena/tools/storage_features_offline.py examples/asr/aishell/configs/storage_features_offline.json

Below is an example json configuration file to help you understand.

{
  "dataset_builder": "speech_recognition_dataset_kaldiio",
  "num_data_threads": 1,
  "trainset_config":{
    "data_scps_dir": "examples/asr/aishell/data/train",
    "data_csv": "examples/asr/aishell/data/train.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "speed_permutation": [0.9, 1.0, 1.1],
    "spectral_augmentation":{"warp_for_time": false, "num_t_mask": 2, "num_f_mask": 2, "max_t": 50, "max_f": 10, "max_w": 80},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "devset_config":{
    "data_scps_dir": "examples/asr/aishell/data/dev",
    "data_csv": "examples/asr/aishell/data/dev.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "testset_config":{
    "data_scps_dir": "examples/asr/aishell/data/test",
    "data_csv": "examples/asr/aishell/data/test.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  }
}

It should be noted that "offline": true. "apply_cmvn" indicates whether CMVN processing is required, and it is set to true by default. "global_cmvn" indicates whether CMVN processing is global, and it is set to true by default.

4.5) Train a Model

With all the above preparation done, training becomes straight-forward. athena/main.py is the entry point of the training module. Just run:

$ python athena/main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

Please install Horovod and MPI at first, if you want to train model using multi-gpu. See the Horovod page for more instructions.

To run on a machine with 4 GPUs with Athena:

$ horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

To run on 4 machines with 4 GPUs each with Athena:

$ horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

4.6) Evaluate a model

All of our inference related scripts are merged into inference.py. athena/inference.py is the entry point of inference. Just run:

python athena/inference.py examples/asr/timit/configs/mtl_transformer_sp_101.json

A file named inference.log will be generated, which contains the log of decoding. inference.log is very important to get correct scoring results, and it will be overwrited if you run athena/inference.py multiple times.

4.7) Scoring

For scoring, you will need to install sclite first. The results of scoring can be found in score/score_map/inference.log.result.map.sys. The last few lines will look like this

|================================================================|
| Sum/Avg|  192   7215 | 84.4   11.4    4.3    3.2   18.8   99.5 |
|================================================================|
|  Mean  |  1.0   37.6 | 84.7   11.4    3.9    3.3   18.6   99.5 |
|  S.D.  |  0.0   11.7 |  7.7    6.3    4.2    3.6    9.0    7.2 |
| Median |  1.0   36.0 | 85.0   10.8    2.9    2.8   17.5  100.0 |
|----------------------------------------------------------------|

The line with Sum/Avg is usually what you should be looking for if you just want an overall PER result. In this case, 11.4 is the substitution error, 4.3 is the deletion error, 3.2 is the insertion error and 18.8 is the total PER.

7) Self-supervised speech representation learning

7.1) MPC

Masked Predictive Coding (MPC) uses masked reconstruction objective to perform predictive coding on transformer based models. It achieved significant improvements on various speech recognition datasets. For more information, please refer to following paper(s).

Improving Transformer-based Speech Recognition Using Unsupervised Pre-training

A Further Study of Unsupervised Pre-training for Transformer Based Speech Recognition

MPC models can be trained by running python athena/main.py examples/asr/*/configs/mpc.json. To use pretrained MPC model in ASR training, simply set the "pretrained_model" section in ASR json config to the checkpoint dir of MPC model and proceed training.

7.2) Speech SimCLR

Speech SimCLR is a new self-supervised objective for speech representation learning. During training, Speech SimCLR applies augmentation on raw speech and its spectrogram. Its objective is the combination of contrastive loss that maximizes agreement between differently augmented samples in the latent space and reconstruction loss of input representation. For more information, please refer to following paper(s).

Speech SimCLR: Combining Contrastive and Reconstruction Objective for Self-supervised Speech Representation Learning

For now, pre-training with Speech SimCLR is only supported for Librispeech. You can run it with python athena/main.py examples/asr/librispeech/configs/speech_simclr.json. For feature extraction, simply run python athena/inference.py examples/asr/librispeech/configs/speech_simclr.json. The pre-trained Speech SimCLR models can be found here.

8) Results

8.1) ASR

Language Model Name Training Data Hours of Speech Error Rate
English Transformer LibriSpeech Dataset 960 h 3.1% (WER)
Mandarin Transformer HKUST Dataset 151 h 22.75% (CER)
Mandarin Transformer AISHELL Dataset 178 h 6.6% (CER)

To compare with other published results, see wer_are_we.md.

9) Directory Structure

Below is the basic directory structure for Athena

|-- Athena
|   |-- data  # - root directory for input-related operations
|   |   |-- datasets  # custom datasets for ASR, TTS and pre-training
|   |-- layers  # some layers
|   |-- models  # some models
|   |-- tools # contains various tools, e.g. decoding tools
|   |-- transform # custom featureizer based on C++
|   |   |-- feats
|   |   |   |-- ops # c++ code on tensorflow ops
|   |-- utils # utils, e.g. checkpoit, learning_rate, metric, etc
|-- deploy  # deployment with Tensorflow C++
|   |-- include
|   |-- src
|-- docker
|-- docs  # docs
|-- examples  # example scripts for ASR, TTS, etc
|   |-- asr  # each subdirectory contains a data preparation scripts and a run script for the task
|   |   |-- aishell
|   |   |-- hkust
|   |   |-- librispeech
|-- tools  # need to source env.sh before training
Owner
Ke Technologies
Ke Technologies
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022