PIZZA - a task-oriented semantic parsing dataset

Overview

PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

The dataset comes in two main versions, one in a recently introduced utterance-level hierarchical notation that we call TOP, and one whose targets are executable representations (EXR).

Below are two examples of orders that can be found in the data:

{
    "dev.SRC": "five medium pizzas with tomatoes and ham",
    "dev.EXR": "(ORDER (PIZZAORDER (NUMBER 5 ) (SIZE MEDIUM ) (TOPPING HAM ) (TOPPING TOMATOES ) ) )",
    "dev.TOP": "(ORDER (PIZZAORDER (NUMBER five ) (SIZE medium ) pizzas with (TOPPING tomatoes ) and (TOPPING ham ) ) )"
}
{
    "dev.SRC": "i want to order two medium pizzas with sausage and black olives and two medium pizzas with pepperoni and extra cheese and three large pizzas with pepperoni and sausage",
    "dev.EXR": "(ORDER (PIZZAORDER (NUMBER 2 ) (SIZE MEDIUM ) (COMPLEX_TOPPING (QUANTITY EXTRA ) (TOPPING CHEESE ) ) (TOPPING PEPPERONI ) ) (PIZZAORDER (NUMBER 2 ) (SIZE MEDIUM ) (TOPPING OLIVES ) (TOPPING SAUSAGE ) ) (PIZZAORDER (NUMBER 3 ) (SIZE LARGE ) (TOPPING PEPPERONI ) (TOPPING SAUSAGE ) ) )",
    "dev.TOP": "(ORDER i want to order (PIZZAORDER (NUMBER two ) (SIZE medium ) pizzas with (TOPPING sausage ) and (TOPPING black olives ) ) and (PIZZAORDER (NUMBER two ) (SIZE medium ) pizzas with (TOPPING pepperoni ) and (COMPLEX_TOPPING (QUANTITY extra ) (TOPPING cheese ) ) ) and (PIZZAORDER (NUMBER three ) (SIZE large ) pizzas with (TOPPING pepperoni ) and (TOPPING sausage ) ) )"
}

While more details on the dataset conventions and construction can be found in the paper, we give a high level idea of the main rules our target semantics follow:

  • Each order can include any number of pizza and/or drink suborders. These suborders are labeled with the constructors PIZZAORDER and DRINKORDER, respectively.
  • Each top-level order is always labeled with the root constructor ORDER.
  • Both pizza and drink orders can have NUMBER and SIZE attributes.
  • A pizza order can have any number of TOPPING attributes, each of which can be negated. Negative particles can have larger scope with the use of the or particle, e.g., no peppers or onions will negate both peppers and onions.
  • Toppings can be modified by quantifiers such as a lot or extra, a little, etc.
  • A pizza order can have a STYLE attribute (e.g., thin crust style or chicago style).
  • Styles can be negated.
  • Each drink order must have a DRINKTYPE (e.g. coke), and can also have a CONTAINERTYPE (e.g. bottle) and/or a volume modifier (e.g., three 20 fl ounce coke cans).

We view ORDER, PIZZAORDER, and DRINKORDER as intents, and the rest of the semantic constructors as composite slots, with the exception of the leaf constructors, which are viewed as entities (resolved slot values).

Dataset statistics

In the below table we give high level statistics of the data.

Train Dev Test
Number of utterances 2,456,446 348 1,357
Unique entities 367 109 180
Avg entities per utterance 5.32 5.37 5.42
Avg intents per utterance 1.76 1.25 1.28

More details can be found in appendix of our publication.

Getting Started

The repo structure is as follows:

PIZZA
|
|_____ data
|      |_____ PIZZA_train.json.zip             # a zipped version of the training data
|      |_____ PIZZA_train.10_percent.json.zip  # a random subset representing 10% of training data
|      |_____ PIZZA_dev.json                   # the dev portion of the data
|      |_____ PIZZA_test.json                  # the test portion of the data
|
|_____ utils
|      |_____ __init__.py
|      |_____ entity_resolution.py # entity resolution script
|      |_____ express_utils.py     # utilities
|      |_____ semantic_matchers.py # metric functions
|      |_____ sexp_reader.py       # tree reader helper functions 
|      |_____ trees.py             # tree classes and readers
|      |
|      |_____ catalogs             # directory with catalog files of entities
|      
|_____ doc 
|      |_____ PIZZA_dataset_reader_metrics_examples.ipynb
|
|_____ READMED.md

The dev and test data files are json lines files where each line represents one utterance and contains 4 keys:

  • *.SRC: the natural language order input
  • *.EXR: the ground truth target semantic representation in EXR format
  • *.TOP: the ground truth target semantic representation in TOP format
  • *.PCFG_ERR: a boolean flag indicating whether our PCFG system parsed the utterance correctly. See publication for more details

The training data file comes in a similar format, with two differences:

  • there is no train.PCFG_ERR flag since the training data is all synthetically generated hence parsable with perfect accuracy. In other words, this flag would be True for all utterances in that file.
  • there is an extra train.TOP-DECOUPLED key that is the ground truth target semantic representation in TOP-Decoupled format. See publication for more details.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the CC-BY-NC-4.0 License.

Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023