PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

Overview

data2vec-pytorch

PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (FAIR)

Data2Vec is the first high-performance self-supervised algorithm that learns the same way in multiple modalities, including speech, vision and text. Most machines learn exclusively from labeled data. However, through self-supervised learning, machines are able to learn about the world just by observing it and then figuring out the structure of images, speech or text. This is a more scalable and efficient approach for machines to tackle new complex tasks, such as understanding text for more spoken languages.

In summary, the method is as follows:

  1. The encoder extracts features from the masked inputs. These features are outputs of every transformer/linear layer.
  2. The teacher which is an EMA instance of the encoder (in eval model), extracts features from the unmasked inputs.
  3. Optional normalizations are applied to the layers/outputs of the teacher.
  4. Encoder outputs are regressed by a projection block/layer.
  5. The loss is calculated from encoder outputs and teacher outputs.

You can read the paper for more detail.

Implementation

Data2Vec is already implemented in fairseq in which for all modalities there is a seperate implementation (text, vision, audio). According to the paper:

Our primary is to design a single learning mechanism for different modalities. Despite the unified learning regime, we still use modality-specific features extractors and masking strategies. This makes sense given the vastly different nature of the input data.

This implementation differs in the fact that a single Data2Vec model is provided powered by a custom encoder (implemented using PyTorch + HuggingFace Transformers) and tries to unify the whole concept in a single module. The key concept is that there must be modality-specific feature extractions and masking strategies.

  • Masking: For each modality, the Dataset instance must return the masked source, the target and the mask tensor.

  • Feature Extraction: Features are the outputs from the transformer/attention layers. So the forward method must return outputs from all Encoder blocks of the transformer model. HuggingFace Transformers/Fairseq models return transformer layers outputs separately out of the box.

This implementation uses HuggingFace Transformers models as encoders for Data2Vec which you can inspect in the encoder.py files for each modality. Although, you can provide your own encoder model. Just make sure that your encoder must be Transformer-based according to the paper and outputs from every encoder layer must be provided.

Note: This implementation's goal is to provide the necessary building blocks of Data2Vec so anyone can adapt it to their own use case with ease, so in order to make it easy to get hands on, some functionalities like mixed precision, distributed training, etc are not included to keep it as clean & simple as possible. If you only need to train a standard large scale Data2Vec model use the official repo.

Train

First things first, install the requirements:

pip install -r requirements.txt

NLP

Train a Language Model based on RoBERTa (HuggingFace) on WikiText103

Configure the related properties in text/configs/roberta-pretraining.yaml and run:

python train.py --config text/configs/roberta-pretraining.yaml 

Vision

Run a Masked Image modeling training based on BEiT (HuggingFace)

Pass the path to the image dataset in the config file at vision/configs/beit-pretraining.yaml under dataset > path > train/test and modify other properties as you desire and run the following:

python train.py --config vision/configs/beit-pretraining.yaml 

Speech

Audio pretraining based on Wav2Vec2 (HuggingFace) on timit dataset. If you want to use other datasets like librispeech provide it in audio/dataset.py (some minor changes to the timit class would do the job because both are loaded from HuggingFace datasets)

Configure other properties as you desire and run the following:

python train.py --config audio/configs/wav2vec2-pretraining.yaml 

Pre-trained Weights

The models are available on HuggingFace Hub and you can use them like below:

RoBERTa

Data2Vec model trained with RoBERTa as the encoder (data2vec-roberta-base)

from transformers import AutoModel, AutoConfig
from transformers import RobertaModel

checkpoint = 'arxyzan/data2vec-roberta-base'

# Option 1: load using AutoModel
data2vec_roberta = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by RobertaModel
data2vec_roberta = RobertaModel.from_pretrained(checkpoint)

BEiT

Data2Vec model trained with BEiT as the encoder (data2vec-beit-base)

from transformers import AutoModel, AutoConfig
from transformers import BeitModel

checkpoint = 'arxyzan/data2vec-beit-base'

# Option 1: load using AutoModel
data2vec_beit = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by BeitModel
data2vec_beit = BeitModel.from_pretrained(checkpoint)

Wav2Vec2

Data2Vec model trained with Wav2Vec2 as the encoder (data2vec-wav2vec2-base)

from transformers import AutoModel, AutoConfig
from transformers import Wav2Vec2Model

checkpoint = 'arxyzan/data2vec-wav2vec2-base'

# Option 1: load using AutoModel
data2vec_wav2vec2 = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by Wav2Vec2Model
data2vec_wav2vec2 = Wav2Vec2Model.from_pretrained(checkpoint)

Note: The above models' weights were carefully ported from the original checkpoints in the fairseq version.

Fine-tuning

  1. Fine-tune using the checkpoints mentioned above:
# Text classification using Roberta model from HuggingFace
from transformers import RobertaModel, RobertaForSequenceClassification

checkpoint = 'arxyzan/data2vec-roberta-base'
# this is exactly a roberta model but trained with data2vec
data2vec_roberta = RobertaModel.from_pretrained(checkpoint)
text_classifier = RobertaForSequenceClassification(data2vec_roberta.config)
# assign `data2vec-roberta` weights to the roberta block of the classifier
text_classifier.roberta = data2vec_roberta
...
  1. In case you trained a model using this codebase, you can fine-tune it by taking out the encoder's state dict from the checkpoint which gives you a HuggingFace model and you can fine-tune it for any downstream task as you'd normally do for HuggingFace models.
# load a checkpoint for finetuning
from transformers import RobertaModel, RobertaConfig
roberta = RobertaModel(RobertaConfig())
checkpoint = torch.load('path/to/data2vec.pt')
roberta_state_dict = checkpoint['encoder']
# load roberta weights from the encoder part of the data2vec model
encoder = roberta.load_state_dict(roberta_state_dict)

# Now fine-tune a regular HuggingFace RoBERTa model
...

Contributions

Any contribution regarding training, development and issues are welcome!

Owner
Aryan Shekarlaban
Deep Learning Developer & Researcher
Aryan Shekarlaban
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
1 Jun 28, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021