FactSumm: Factual Consistency Scorer for Abstractive Summarization

Overview

FactSumm: Factual Consistency Scorer for Abstractive Summarization

GitHub release Apache 2.0 Issues

FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization

Without fine-tuning, you can simply apply a variety of downstream tasks to both the source article and the generated abstractive summary

For example, by extracting fact triples from source articles and generated summaries, we can verify that generated summaries correctly reflect source-based facts ( See image above )

As you can guess, this PoC-ish project uses a lot of pre-trained modules that require super-duper computing resources

So don't blame me, just take it as a concept project 👀


Installation

FactSumm requires Java to be installed in your environment to use Stanford OpenIE. With Java and Python 3, you can install factsumm simply using pip:

pip install factsumm

Or you can install FactSumm from source repository:

git clone https://github.com/huffon/factsumm
cd factsumm
pip install .

Usage

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> article = "Lionel Andrés Messi (born 24 June 1987) is an Argentine professional footballer who plays as a forward and captains both Spanish club Barcelona and the Argentina national team. Often considered as the best player in the world and widely regarded as one of the greatest players of all time, Messi has won a record six Ballon d'Or awards, a record six European Golden Shoes, and in 2020 was named to the Ballon d'Or Dream Team."
>>> summary = "Lionel Andrés Messi (born 24 Aug 1997) is an Spanish professional footballer who plays as a forward and captains both Spanish club Barcelona and the Spanish national team."
>>> factsumm(article, summary, verbose=True)
SOURCE Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 June 1987', 'DATE'), ('Argentine', 'NORP'), ('Spanish', 'NORP'), ('Barcelona',
'GPE'), ('Argentina', 'GPE')]
2: [('one', 'CARDINAL'), ('Messi', 'PERSON'), ('six', 'CARDINAL'), ('European Golden Shoes', 'WORK_OF_ART'), ('2020', 'DATE'),
("the Ballon d'Or Dream Team", 'ORG')]

SUMMARY Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 Aug 1997', 'DATE'), ('Spanish', 'NORP'), ('Barcelona', 'ORG')]

SOURCE Facts
('Lionel Andrés Messi', 'per:origin', 'Argentine')
('Spanish', 'per:date_of_birth', '24 June 1987')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Lionel Andrés Messi', 'per:date_of_birth', '24 June 1987')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

SUMMARY Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

COMMON Facts
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

DIFF Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')

Fact Score: 0.5714285714285714

Answers based on SOURCE (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] <unanswerable>
[Q] When was Lionel Andrés Messi born?  [Pred] 24 June 1987
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Argentine
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

Answers based on SUMMARY (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] Lionel Andrés Messi
[Q] When was Lionel Andrés Messi born?  [Pred] 24 Aug 1997
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Spanish
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

QAGS Score: 0.3333333333333333

SOURCE Triples
('Messi', 'is', 'Argentine')
('Messi', 'is', 'professional')

SUMMARY Triples
('Messi', 'is', 'Spanish')
('Messi', 'is', 'professional')

Triple Score: 0.5

Avg. ROUGE-1: 0.4415584415584415
Avg. ROUGE-2: 0.3287671232876712
Avg. ROUGE-L: 0.4415584415584415

Sub-modules

From here, you can find various way to score Factual Consistency level with Unsupervised methods


Triple-based Module ( closed-scheme )

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_facts(article, summary, verbose=True)
SOURCE Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 June 1987', 'DATE'), ('Argentine', 'NORP'), ('Spanish', 'NORP'), ('Barcelona',
'GPE'), ('Argentina', 'GPE')]
2: [('one', 'CARDINAL'), ('Messi', 'PERSON'), ('six', 'CARDINAL'), ('European Golden Shoes', 'WORK_OF_ART'), ('2020', 'DATE'),
("the Ballon d'Or Dream Team", 'ORG')]

SUMMARY Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 Aug 1997', 'DATE'), ('Spanish', 'NORP'), ('Barcelona', 'ORG')]

SOURCE Facts
('Lionel Andrés Messi', 'per:origin', 'Argentine')
('Spanish', 'per:date_of_birth', '24 June 1987')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Lionel Andrés Messi', 'per:date_of_birth', '24 June 1987')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

SUMMARY Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

COMMON Facts
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

DIFF Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')

Fact Score: 0.5714285714285714

The triple-based module counts the overlap of fact triples between the generated summary and the source document.


QA-based Module

If you ask questions about the summary and the source document, you will get a similar answer if the summary realistically matches the source document

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_qas(article, summary, verbose=True)
Answers based on SOURCE (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] <unanswerable>
[Q] When was Lionel Andrés Messi born?  [Pred] 24 June 1987
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Argentine
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

Answers based on SUMMARY (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] Lionel Andrés Messi
[Q] When was Lionel Andrés Messi born?  [Pred] 24 Aug 1997
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Spanish
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

QAGS Score: 0.3333333333333333

OpenIE-based Module ( open-scheme )

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_triples(article, summary, verbose=True)
SOURCE Triples
('Messi', 'is', 'Argentine')
('Messi', 'is', 'professional')

SUMMARY Triples
('Messi', 'is', 'Spanish')
('Messi', 'is', 'professional')

Triple Score: 0.5

Stanford OpenIE can extract relationships from raw strings. But it's important to note that it's based on the open scheme, not the closed scheme (like Triple-based Module).

For example, from "Obama was born in Hawaii", OpenIE extracts (Obama, born in Hawaii). However, from "Hawaii is the birthplace of Obama", it extracts (Hawaii, is the birthplace of, Obama). In common sense, the triples extracted from the two sentences should be identical, but OpenIE can't recognize that they are the same since it is based on an open scheme.

So the score for this module may be unstable.


ROUGE-based Module

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.calculate_rouge(article, summary)
Avg. ROUGE-1: 0.4415584415584415
Avg. ROUGE-2: 0.3287671232876712
Avg. ROUGE-L: 0.4415584415584415

Simple but effective word-level overlap ROUGE score


Citation

If you apply this library to any project, please cite:

@misc{factsumm,
  author       = {Heo, Hoon},
  title        = {FactSumm: Factual Consistency Scorer for Abstractive Summarization},
  howpublished = {\url{https://github.com/Huffon/factsumm}},
  year         = {2021},
}

References

You might also like...
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

The guide to tackle with the Text Summarization
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Codes for processing meeting summarization datasets AMI and ICSI.
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

 SummerTime - Text Summarization Toolkit for Non-experts
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Comments
  • BUG: AttributeError: 'str' object has no attribute 'generate'

    BUG: AttributeError: 'str' object has no attribute 'generate'

    when I use the example in README to gain qags score, there has a problem:

    AttributeError Traceback (most recent call last) in () ----> 1 factsumm.extract_qas(article, summary, verbose=True)

    ~/Desktop/factsumm-master/factsumm/factsumm.py in extract_qas(self, source, summary, source_ents, summary_ents, verbose, device) 292 summary_ents = self.ner(summary_lines) 293 --> 294 summary_qas = self.qg(summary_lines, summary_ents) 295 296 source_answers = self.qa(source, summary_qas)

    ~/Desktop/factsumm-master/factsumm/utils/module_question.py in generate_question(sentences, total_entities) 55 ).to(device) 56 ---> 57 outputs = model.generate(**tokens, max_length=64) 58 59 question = tokenizer.decode(outputs[0])

    AttributeError: 'str' object has no attribute 'generate'

    hope you can help me to solve this problem. Thanks!!

    opened by victory-h 0
  • IndexError: index out of range in self

    IndexError: index out of range in self

    In example, when I extend the length of the article and summary , I get this error.

    /opt/anaconda3/envs/LDA0115/lib/python3.6/site-packages/torch/nn/modules/sparse.py in forward(self, input) 124 return F.embedding( 125 input, self.weight, self.padding_idx, self.max_norm, --> 126 self.norm_type, self.scale_grad_by_freq, self.sparse) 127 128 def extra_repr(self) -> str:

    /opt/anaconda3/envs/LDA0115/lib/python3.6/site-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 1850 # remove once script supports set_grad_enabled 1851 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 1852 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 1853 1854

    IndexError: index out of range in self

    opened by victory-h 0
  • Hit Error while using this toolkits

    Hit Error while using this toolkits

    Loading Named Entity Recognition Pipeline... Loading Relation Extraction Pipeline... Fact Score: 0.5714285714285714 Loading Question Generation Pipeline... Loading Question Answering Pipeline... Traceback (most recent call last): File "testcase.py", line 5, in print(factsumm(article, summary, verbose=False)) File "/usr/local/lib/python3.8/dist-packages/factsumm/init.py", line 366, in call qags_score = self.extract_qas( File "/usr/local/lib/python3.8/dist-packages/factsumm/init.py", line 263, in extract_qas source_answers = self.qa(source, summary_qas) File "/usr/local/lib/python3.8/dist-packages/factsumm/utils/level_sentence.py", line 100, in answer_question pred = qa( File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/question_answering.py", line 248, in call return super().call(examples[0], **kwargs) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/base.py", line 915, in call return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/base.py", line 923, in run_single outputs = self.postprocess(model_outputs, **postprocess_params) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/question_answering.py", line 409, in postprocess min_null_score = min(min_null_score, (start_[0] * end_[0]).item()) ValueError: can only convert an array of size 1 to a Python scalar

    while using provided example in README, I meet the Error above ( I use pip install to install this packet and create the python file, copy the example code and run ) pip uninstall and pip reinstall doesn`t help QAQ any suggestion are greatly appreciated!

    opened by Ricardokevins 0
Releases(0.1.2)
  • 0.1.2(May 13, 2021)

    Update BERTScore based Module (See Sec 4.1 from https://arxiv.org/pdf/2005.03754.pdf)

    >>> factsumm = FactSumm()
    >>> factsumm.calculate_bert_score(article, summary)
    BERTScore Score
    Precision: 0.9151781797409058
    Recall: 0.9141832590103149
    F1: 0.9150083661079407
    
    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(May 12, 2021)

    Currently FactSumm supports the following methods:

    • NER + RE based Triple Module
    • QG + QA based Module
    • OpenIE based Triple Module
    • ROUGE based Module
    Source code(tar.gz)
    Source code(zip)
Owner
devfon
Who wants to change the world slowly
devfon
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022