Package for controllable summarization

Overview

summarizers

PyPI version GitHub

  • summarizers is package for controllable summarization based CTRLsum.
  • currently, we only supports English. It doesn't work in other languages.

Installation

pip install summarizers

Usage

1. Create Summarizers

  • First at all, create summarizers obejct to summarize your own article.
>>> from summarizers import Summarizers
>>> summ = Summarizers()
  • You can select type of source article between [normal, paper, patent].
  • If you don't input any parameter, default type is normal.
>>> from summarizers import Summarizers
>>> summ = Summarizers('normal')  # <-- default.
>>> summ = Summarizers('paper')
>>> summ = Summarizers('patent')
  • If you want GPU acceleration, set param device='cuda'.
>>> from summarizers import Summarizers
>>> summ = Summarizers('normal', device='cuda')

2. Basic Summarization

  • If you inputted source article, basic summariztion is conducted.
>>> contents = """
Tunip is the Octonauts' head cook and gardener. 
He is a Vegimal, a half-animal, half-vegetable creature capable of breathing on land as well as underwater. 
Tunip is very childish and innocent, always wanting to help the Octonauts in any way he can. 
He is the smallest main character in the Octonauts crew.
"""
>>> summ(contents)
'Tunip is a Vegimal, a half-animal, half-vegetable creature'

3. Query focused Summarization

  • If you want to input query together, Query focused summarization conducted.
>>> summ(contents, query="main character of Octonauts")
'Tunip is the smallest main character in the Octonauts crew.'

3. Abstractive QA (Auto Question Detection)

  • If you inputted question as query, Abstractive QA is conducted.
>>> summ(contents, query="What is Vegimal?")
'Half-animal, half-vegetable'
  • You can turn off this feature by setting param question_detection=False.
>>> summ(contents, query="SOME_QUERY", question_detection=False)

4. Prompt based Summarization

  • You can generate summary that begins with some sequence using param prompt.
  • It works like GPT-3's Prompt based generation. (but It doesn't work very well.)
>>> summ(contents, prompt="Q:Who is Tunip? A:")
"Q:Who is Tunip? A: Tunip is the Octonauts' head"

5. Query focused Summarization with Prompt

  • You can also input both query and prompt.
  • In this case, a query focus summary is generated that starts with a prompt.
>>> summ(contents, query="personality of Tunip", prompt="Tunip is very")
"Tunip is very childish and innocent, always wanting to help the Octonauts."

6. Options for Decoding Strategy

  • For generative models, decoding strategy is very important.
  • summarizers support variety of options for decoding strategy.
>>> summ(
...     contents=contents,
...     num_beams=10,
...     top_k=30,
...     top_p=0.85,
...     no_repeat_ngram_size=3,                  
... )

License

Copyright 2021 Hyunwoong Ko.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Hyunwoong Ko
Research Engineer at @tunib-ai. previously @kakaobrain.
Hyunwoong Ko
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021