Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Related tags

Text Data & NLPbort
Overview

Bort

Companion code for the paper "Optimal Subarchitecture Extraction for BERT."

Bort is an optimal subset of architectural parameters for the BERT architecture, extracted by applying a fully polynomial-time approximation scheme (FPTAS) for neural architecture search. Bort has an effective (that is, not counting the embedding layer) size of 5.5% the original BERT-large architecture, and 16% of the net size. It is also able to be pretrained in 288 GPU hours, which is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large. It is also 7.9x faster than BERT-base (20x faster than BERT/RoBERTa-large) on a CPU, and performs better than other compressed variants of the architecture, and some of the non-compressed variants; it obtains an average performance improvement of between 0.3% and 31%, relative, with respect to BERT-large on multiple public natural language understanding (NLU) benchmarks.

Here are the corresponding GLUE scores on the test set:

Model Score CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI(v2) RTE WNLI AX
Bort 83.6 63.9 96.2 94.1/92.3 89.2/88.3 66.0/85.9 88.1 87.8 92.3 82.7 71.2 51.9
BERT-Large 80.5 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7 85.9 92.7 70.1 65.1 39.6

And SuperGLUE scores on the test set:

Model Score BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX-b AX-g
Bort 74.1 83.7 81.9/86.5 89.6 83.7/54.1 49.8/49.0 81.2 70.1 65.8 48.0 96.1/61.5
BERT-Large 69.0 77.4 75.7/83.6 70.6 70.0/24.1 72.0/71.3 71.7 69.6 64.4 23.0 97.8/51.7

And here are the architectural parameters:

Model Parameters (M) Layers Attention heads Hidden size Intermediate size Embedding size (M) Encoder proportion (%)
Bort 56 4 8 1024 768 39 30.3
BERT-Large 340 24 16 1024 4096 31.8 90.6

Setup:

  1. You need to install the requirements from the requirements.txt file:
pip install -r requirements.txt

This code has been tested with Python 3.6.5+. To save yourself some headache we recommend you install Horovod from source, after you install MxNet. This is only needed if you are pre-training the architecture. For this, run the following commands (you'll need a C++ compiler which supports c++11 standards, like gcc > 4.8):

    pip uninstall horovod
    HOROVOD_CUDA_HOME=/usr/local/cuda-10.1 \
    HOROVOD_WITH_MXNET=1 \
    HOROVOD_GPU_ALLREDUCE=NCCL \
    pip install horovod==0.16.2 --no-cache-dir
  1. You also need to download the model from here. If you have the AWS CLI, all you need to do is run:
aws s3 cp s3://alexa-saif-bort/bort.params model/
  1. To run the tests, you also need to download the sample text from Gluon and put it in test_data/:
wget https://github.com/dmlc/gluon-nlp/blob/v0.9.x/scripts/bert/sample_text.txt
mv sample_text.txt test_data/

Pre-training:

Bort is already pre-trained, but if you want to try out other datasets, you can follow the steps here. Note that this does not run the FPTAS described in the paper, and works for a fixed architecture (Bort).

  1. First, you will need to tokenize the pre-training text:
python create_pretraining_data.py \
            --input_file <input text> \
            --output_dir <output directory> \
            --dataset_name <dataset name> \
            --dupe_factor <duplication factor> \
            --num_outputs <number of output files>

We recommend using --dataset_name openwebtext_ccnews_stories_books_cased for the vocabulary. If your data file is too large, the script will throw out-of-memory errors. We recommend splitting it into smaller chunks and then calling the script one-by-one.

  1. Then run the pre-training distillation script:
./run_pretraining_distillation.sh <num gpus> <training data> <testing data> [optional teacher checkpoint]

Please see the contents of run_pretraining_distillation.sh for example usages and additional optional configuration. If you have installed Horovod, we highly recommend you use run_pretraining_distillation_hvd.py instead.

Fine-tuning:

  1. To fine-tune Bort, run:
./run_finetune.sh <your task here>

We recommend you play with the hyperparameters from run_finetune.sh. This code supports all the tasks outlined in the paper, but for the case of the RACE dataset, you need to download the data and extract it. The default location for extraction is ~/.mxnet/datasets/race. Same goes for SuperGLUE's MultiRC, since the Gluon implementation is the old version. You can download the data and extract it to ~/.mxnet/datasets/superglue_multirc/.

It is normal to get very odd results for the fine-tuning step, since this repository only contains the training part of Agora. However, you can easily implement your own version of that algorithm. We recommend you use the following initial set of hyperparameters, and follow the requirements described in the papers at the end of this file:

seeds={0,1,2,3,4}
learning_rates={1e-4, 1e-5, 9e-6}
weight_decays={0, 10, 100, 350}
warmup_rates={0.35, 0.40, 0.45, 0.50}
batch_sizes={8, 16}

Troubleshooting:

Dependency errors

Bort requires a rather unusual environment to run. For this reason, most of the problems regarding runtime can be fixed by installing the requirements from the requirements.txt file. Also make sure to have reinstalled Horovod as outlined above.

Script failing when downloading the data

This is inherent to the way Bort is fine-tuned, since it expects the data to be preexisting for some arbitrary implementation of Agora. You can get around that error by downloading the data before running the script, e.g.:

from data.classification import BoolQTask
task = BoolQTask()
task.dataset_train()[1]; task.dataset_val()[1]; task.dataset_test()[1]
Out-of-memory errors

While Bort is designed to be efficient in terms of the space it occupies in memory, a very large batch size or sequence length will still cause you to run out of memory. More often than ever, reducing the sequence length from 512 to 256 will solve out-of-memory issues. 80% of the time, it works every time.

Slow fine-tuning/pre-training

We strongly recommend using distributed training for both fine-tuning and pre-training. If your Horovod acts weird, remember that it needs to be built after the installation of MXNet (or any framework for that matter).

Low task-specific performance

If you observe near-random task-specific performance, that is to be expected. Bort is a rather small architecture and the optimizer/scheduler/learning rate combination is quite aggressive. We highly recommend you fine-tune Bort using an implementation of Agora. More details on how to do that are in the references below, specifically the second paper. Note that we needed to implement "replay" (i.e., re-doing some iterations of Agora) to get it to converge better.

References

If you use Bort or the other algorithms in your work, we'd love to hear from it! Also, please cite the so-called "Bort trilogy" papers:

@article{deWynterApproximation,
    title={An Approximation Algorithm for Optimal Subarchitecture Extraction},
    author={Adrian de Wynter},
    year={2020},
    eprint={2010.08512},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
    journal={CoRR},
    volume={abs/2010.08512},
    url={http://arxiv.org/abs/2010.08512}
}
@article{deWynterAlgorithm,
      title={An Algorithm for Learning Smaller Representations of Models With Scarce Data},
      author={Adrian de Wynter},
      year={2020},
      eprint={2010.07990},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      journal={CoRR},
      volume={abs/2010.07990},
      url={http://arxiv.org/abs/2010.07990}
}
@article{deWynterPerryOptimal,
      title={Optimal Subarchitecture Extraction for BERT},
      author={Adrian de Wynter and Daniel J. Perry},
      year={2020},
      eprint={2010.10499},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      journal={CoRR},
      volume={abs/2010.10499},
      url={http://arxiv.org/abs/2010.10499}
}

Lastly, if you use the GLUE/SuperGLUE/RACE tasks, don't forget to give proper attribution to the original authors.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Alexa
Alexa
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022