🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

Overview

PAUSE: Positive and Annealed Unlabeled Sentence Embedding

Sentence embedding refers to a set of effective and versatile techniques for converting raw text into numerical vector representations that can be used in a wide range of natural language processing (NLP) applications. The majority of these techniques are either supervised or unsupervised. Compared to the unsupervised methods, the supervised ones make less assumptions about optimization objectives and usually achieve better results. However, the training requires a large amount of labeled sentence pairs, which is not available in many industrial scenarios. To that end, we propose a generic and end-to-end approach -- PAUSE (Positive and Annealed Unlabeled Sentence Embedding), capable of learning high-quality sentence embeddings from a partially labeled dataset, which effectively learns sentence embeddings from PU datasets by jointly optimizing the supervised and PU loss. The main highlights of PAUSE include:

  • good sentence embeddings can be learned from datasets with only a few positive labels;
  • it can be trained in an end-to-end fashion;
  • it can be directly applied to any dual-encoder model architecture;
  • it is extended to scenarios with an arbitrary number of classes;
  • polynomial annealing of the PU loss is proposed to stabilize the training;
  • our experiments (reproduction steps are illustrated below) show that PAUSE constantly outperforms baseline methods.

This repository contains Tensorflow implementation of PAUSE to reproduce the experimental results. Upon using this repo for your work, please cite:

@inproceedings{cao2021pause,
  title={PAUSE: Positive and Annealed Unlabeled Sentence Embedding},
  author={Cao, Lele and Larsson, Emil and von Ehrenheim, Vilhelm and Cavalcanti Rocha, Dhiana Deva and Martin, Anna and Horn, Sonja},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2021},
  url={https://arxiv.org/abs/2109.03155}
}

Prerequisites

Install virtual environment first to avoid breaking your native environment. If you use Anaconda, do

conda update conda
conda create --name py37-pause python=3.7
conda activate py37-pause

Then install the dependent libraries:

pip install -r requirements.txt

Unsupervised STS

Models are trained on a combination of the SNLI and Multi-Genre NLI datasets, which contain one million sentence pairs annotated with three labels: entailment, contradiction and neutral. The trained model is tested on the STS 2012-2016, STS benchmark, and SICK-Relatedness (SICK-R) datasets, which have labels between 0 and 5 indicating the semantic relatedness of sentence pairs.

Training

Example 1: train PAUSE-small using 5% labels for 10 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=10 \
  --model=small \
  --pos_sample_prec=5

Example 2: train PAUSE-base using 30% labels for 20 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=20 \
  --model=base \
  --pos_sample_prec=30

To check the parameters, run

python train_nli.py --help

which will print the usage as follows.

usage: train_nli.py [-h] [--model MODEL]
                    [--pretrained_weights PRETRAINED_WEIGHTS]
                    [--train_epochs TRAIN_EPOCHS] [--batch_size BATCH_SIZE]
                    [--train_steps_per_epoch TRAIN_STEPS_PER_EPOCH]
                    [--max_seq_len MAX_SEQ_LEN] [--prior PRIOR]
                    [--train_lr TRAIN_LR] [--pos_sample_prec POS_SAMPLE_PREC]
                    [--log_dir LOG_DIR] [--model_dir MODEL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         The tfhub link for the base embedding model
  --pretrained_weights PRETRAINED_WEIGHTS
                        The pretrained model if any
  --train_epochs TRAIN_EPOCHS
                        The max number of training epoch
  --batch_size BATCH_SIZE
                        Training mini-batch size
  --train_steps_per_epoch TRAIN_STEPS_PER_EPOCH
                        Step interval of evaluation during training
  --max_seq_len MAX_SEQ_LEN
                        The max number of tokens in the input
  --prior PRIOR         Expected ratio of positive samples
  --train_lr TRAIN_LR   The maximum learning rate
  --pos_sample_prec POS_SAMPLE_PREC
                        The percentage of sampled positive examples used in
                        training; should be one of 1, 10, 30, 50, 70
  --log_dir LOG_DIR     The path where the logs are stored
  --model_dir MODEL_DIR
                        The path where models and weights are stored

Testing

After the model is trained, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131724, where the directory name (20210517-131724) is the model ID. To test the model with that ID, run

python test_sts.py --model=20210517-131724

The test result on STS datasets will be printed on console and also saved in file ./artifacts/test/sts_20210517-131724.txt

Supervised STS

Train

You can continue to finetune a pertained model on supervised STSb. For example, assume we have trained a PAUSE model based on small BERT (say located at ./artifacts/model/20210517-131725), if we want to finetune the model on STSb for 2 epochs, we can run

python ft_stsb.py \
  --model=small \
  --train_epochs=2 \
  --pretrained_weights=./artifacts/model/20210517-131725

Note that it is important to match the model size (--model) with the pretrained model size (--pretrained_weights).

Testing

After the model is finetuned, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131726, where the directory name (20210517-131726) is the model ID. To test the model with that ID, run

python ft_stsb_test.py --model=20210517-131726

SentEval evaluation

To evaluate the PAUSE embeddings using SentEval (preferably using GPU), you need to download the data first:

cd ./data/downstream
./get_transfer_data.bash
cd ../..

Then, run the sent_eval.py script:

python sent_eval.py \
  --data_path=./data \
  --model=20210328-212801

where the --model parameter specifies the ID of the model you want to evaluate. By default, the model should exist in folder ./artifacts/model/embed. If you want to evaluate a trained model in our public GCS (gs://motherbrain-pause/model/...), please run (e.g. PAUSE-NLI-base-50%):

python sent_eval.py \
  --data_path=./data \
  --model_location=gcs \
  --model=20210329-065047

We provide the following models for demonstration purposes:

Model Model ID
PAUSE-NLI-base-100% 20210414-162525
PAUSE-NLI-base-70% 20210328-212801
PAUSE-NLI-base-50% 20210329-065047
PAUSE-NLI-base-30% 20210329-133137
PAUSE-NLI-base-10% 20210329-180000
PAUSE-NLI-base-5% 20210329-205354
PAUSE-NLI-base-1% 20210329-195024
You might also like...
Code for
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Releases(1.0)
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
A simple implementation of N-gram language model.

About A simple implementation of N-gram language model. Requirements numpy Data preparation Corpus Training data for the N-gram model, a text file lik

4 Nov 24, 2021
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022