An assignment on creating a minimalist neural network toolkit for CS11-747

Overview

minnn

by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik

This is an exercise in developing a minimalist neural network toolkit for NLP, part of Carnegie Mellon University's CS11-747: Neural Networks for NLP.

The most important files it contains are the following:

  1. minnn.py: This is what you'll need to implement. It implements a very minimalist version of a dynamic neural network toolkit (like PyTorch or Dynet). Some code is provided, but important functionality is not included.
  2. classifier.py: training code for a Deep Averaging Network for text classification using minnn. You can feel free to make any modifications to make it a better model, but the original version of classifier.py must also run with your minnn.py implementation.
  3. setup.py: this is blank, but if your classifier implementation needs to do some sort of data downloading (e.g. of pre-trained word embeddings) you can implement this here. It will be run before running your implementation of classifier.py.
  4. data/: Two datasets, one from the Stanford Sentiment Treebank with tree info removed and another from IMDb reviews.

Assignment Details

Important Notes:

  • There is a detailed description of the code structure in structure.md, including a description of which parts you will need to implement.
  • The only allowed external library is numpy or cupy, no other external libraries are allowed.
  • We will run your code with the following commands, so make sure that whatever your best results are are reproducible using these commands (where you replace ANDREWID with your andrew ID):
    • mkdir -p ANDREWID
    • python classifier.py --train=data/sst-train.txt --dev=data/sst-dev.txt --test=data/sst-test.txt --dev_out=ANDREWID/sst-dev-output.txt --test_out=ANDREWID/sst-test-output.txt
    • python classifier.py --train=data/cfimdb-train.txt --dev=data/cfimdb-dev.txt --test=data/cfimdb-test.txt --dev_out=ANDREWID/cfimdb-dev-output.txt --test_out=ANDREWID/cfimdb-test-output.txt
  • Reference accuracies: with our implementation and the default hyper-parameters, the mean(std) of accuracies with 10 different random seeds on sst is dev=0.4045(0.0070), test=0.4069(0.0105), and on cfimdb dev=0.8792(0.0084). If you implement things exactly in our way and use the default random seed and use the same environment (python 3.8 + numpy 1.18 or 1.19), you may get the accuracies of dev=0.4114, test=0.4253, and on cfimdb dev=0.8857.

The submission file should be a zip file with the following structure (assuming the andrew id is ANDREWID):

  • ANDREWID/
  • ANDREWID/minnn.py # completed minnn.py
  • ANDREWID/classifier.py.py # completed classifier.py with any of your modifications
  • ANDREWID/sst-dev-output.txt # output of the dev set for SST data
  • ANDREWID/sst-test-output.txt # output of the test set for SST data
  • ANDREWID/cfimdb-dev-output.txt # output of the dev set for CFIMDB data
  • ANDREWID/cfimdb-test-output.txt # output of the test set for CFIMDB data
  • ANDREWID/report.pdf # (optional), report. here you can describe anything particularly new or interesting that you did

Grading information:

  • A+: Submissions that implement something new and achieve particularly large accuracy improvements (e.g. 2% over the baseline on SST)
  • A: You additionally implement something else on top of the missing pieces, some examples include:
    • Implementing another optimizer such as Adam
    • Incorporating pre-trained word embeddings, such as those from fasttext
    • Changing the model architecture significantly
  • A-: You implement all the missing pieces and the original classifier.py code achieves comparable accuracy to our reference implementation (about 41% on SST)
  • B+: All missing pieces are implemented, but accuracy is not comparable to the reference.
  • B or below: Some parts of the missing pieces are not implemented.

References

Stanford Sentiment Treebank: https://www.aclweb.org/anthology/D13-1170.pdf

IMDb Reviews: https://openreview.net/pdf?id=Sklgs0NFvr

Owner
Graham Neubig
Graham Neubig
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022