Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

Related tags

Text Data & NLPpiqn
Overview

README

Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

Nested NER:

Flat NER:

Data format:

{
    "tokens": ["Others", ",", "though", ",", "are", "novices", "."], 
    "entities": [{"type": "PER", "start": 0, "end": 1}, {"type": "PER", "start": 5, "end": 6}], "relations": [], "org_id": "CNN_IP_20030328.1600.07", 
    "ltokens": ["WOODRUFF", "We", "know", "that", "some", "of", "the", "American", "troops", "now", "fighting", "in", "Iraq", "are", "longtime", "veterans", "of", "warfare", ",", "probably", "not", "most", ",", "but", "some", ".", "Their", "military", "service", "goes", "back", "to", "the", "Vietnam", "era", "."], 
    "rtokens": ["So", "what", "is", "it", "like", "for", "them", "to", "face", "combat", "far", "from", "home", "?", "For", "an", "idea", ",", "here", "is", "CNN", "'s", "Candy", "Crowley", "with", "some", "war", "stories", "."]
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license, we cannot directly release our preprocessed datasets of ACE04, ACE05, KBP17, NNE and OntoNotes. We only release the preprocessed GENIA, FewNERD, MSRA and CoNLL03 datasets. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the license.

Example

Train

python piqn.py train --config configs/nested.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints on ACE04 and ACE05, or train your own model and then evaluate the model. Because of the limited space of Google Cloud Drive, we share the other models in Baidu Cloud Drive, please download at this link (code: js9z).

python identifier.py eval --config configs/batch_eval.conf

If you use the checkpoints (ACE05 and ACE04) we provided, you will get the following results:

  • ACE05:
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  --- NER ---
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   PER        88.07        92.92        90.43         1724
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   LOC        63.93        73.58        68.42           53
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   WEA        86.27        88.00        87.13           50
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   GPE        87.22        87.65        87.44          405
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   ORG        85.74        81.64        83.64          523
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   VEH        83.87        77.23        80.41          101
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   FAC        75.54        77.21        76.36          136
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 micro        86.38        88.57        87.46         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 macro        81.52        82.61        81.98         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  --- NER on Localization ---
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                Entity        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 micro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 macro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  --- NER on Classification ---
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   PER        97.09        92.92        94.96         1724
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   LOC        76.47        73.58        75.00           53
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   WEA        95.65        88.00        91.67           50
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   GPE        92.93        87.65        90.22          405
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   ORG        93.85        81.64        87.32          523
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   VEH       100.00        77.23        87.15          101
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   FAC        89.74        77.21        83.00          136
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                 micro        95.36        88.57        91.84         2992
2022-03-30 12:56:52,517 [MainThread  ] [INFO ]                 macro        92.25        82.61        87.05         2992
  • ACE04
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  --- NER ---
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   VEH        88.89        94.12        91.43           17
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   WEA        74.07        62.50        67.80           32
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   GPE        89.11        87.62        88.36          719
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   ORG        85.06        84.60        84.83          552
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   FAC        83.15        66.07        73.63          112
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   PER        91.09        92.12        91.60         1498
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                   LOC        72.90        74.29        73.58          105
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 micro        88.48        87.81        88.14         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 macro        83.47        80.19        81.61         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  --- NER on Localization ---
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                Entity        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 micro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 macro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  --- NER on Classification ---
2021-11-15 22:06:50,955 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   VEH        94.12        94.12        94.12           17
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   WEA        95.24        62.50        75.47           32
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   GPE        95.60        87.62        91.44          719
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   ORG        93.59        84.60        88.87          552
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   FAC        93.67        66.07        77.49          112
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   PER        97.11        92.12        94.55         1498
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   LOC        84.78        74.29        79.19          105
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 micro        95.59        87.81        91.53         3035
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 macro        93.44        80.19        85.87         3035

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen-etal-2022-piqn,
    title = "Parallel Instance Query Network for Named Entity Recognition",
    author = "Shen, Yongliang  and
      Wang, Xiaobin  and
      Tan, Zeqi  and
      Xu, Guangwei  and
      Xie, Pengjun  and
      Huang, Fei and
      Lu, Weiming and
      Zhuang, Yueting",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2203.10545",
}
Owner
Yongliang Shen
Knowledge is power.
Yongliang Shen
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022