Text vectorization tool to outperform TFIDF for classification tasks

Overview

textvec logo

WHAT: Supervised text vectorization tool

Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP methods in Python. The main idea of this project is to show alternatives for an excellent TFIDF method which is highly overused for supervised tasks. All interfaces are similar to scikit-learn so you should be able to test the performance of this supervised methods just with a few changes.

Textvec is compatible with: Python 2.7-3.7.


WHY: Comparison with TFIDF

As you can read in the different articles1,2 almost on every dataset supervised methods outperform unsupervised. But most text classification examples on the internet ignores that fact.

IMDB_bin RT_bin Airlines Sentiment_bin Airlines Sentiment_multiclass 20news_multiclass
TF 0.8984 0.7571 0.9194 0.8084 0.8206
TFIDF 0.9052 0.7717 0.9259 0.8118 0.8575
TFPF 0.8813 0.7403 0.9212 NA NA
TFRF 0.8797 0.7412 0.9194 NA NA
TFICF 0.8984 0.7642 0.9199 0.8125 0.8292
TFBINICF 0.8984 0.7571 0.9194 NA NA
TFCHI2 0.8898 0.7398 0.9108 NA NA
TFGR 0.8850 0.7065 0.8956 NA NA
TFRRF 0.8879 0.7506 0.9194 NA NA
TFOR 0.9092 0.7806 0.9207 NA NA

Here is a comparison for binary classification on imdb sentiment data set. Labels sorted by accuracy score and the heatmap shows the correlation between different approaches. As you can see some methods are good for to ensemble models or perform features selection.

Binary comparison

For more dataset benchmarks (rotten tomatoes, airline sentiment) see Binary classification quality comparison


Install:

Usage:

pip install textvec

Source code:

git clone https://github.com/textvec/textvec
cd textvec
pip install .

HOW: Examples

The usage is similar to scikit-learn:

from sklearn.feature_extraction.text import CountVectorizer
from textvec.vectorizers import TfBinIcfVectorizer

cvec = CountVectorizer().fit(train_data.text)

tficf_vec = TfBinIcfVectorizer(sublinear_tf=True)
tficf_vec.fit(cvec.transform(text), y)

For more detailed examples see Basic example and other notebooks in Examples

Currently implemented methods:

  • TfIcfVectorizer
  • TforVectorizer
  • TfgrVectorizer
  • TfigVectorizer
  • Tfchi2Vectorizer
  • TfrfVectorizer
  • TfrrfVectorizer
  • TfBinIcfVectorizer
  • TfpfVectorizer
  • SifVectorizer
  • TfbnsVectorizer

Most of the vectorization techniques you can find in articles1,2,3. If you see any method with wrong name or reference please commit!


TODO

  • Docs

REFERENCE

Comments
  • the bug existed in the vectorizer.py

    the bug existed in the vectorizer.py

    the 35th line sp.spdiag(y == val ......) might be wrong. i assume that u maybe wanna write sp.spdiag([i for i in y if i == val] ......)

    expect your reply,thx!

    opened by dongrixinyu 3
  • AttributeError: 'NoneType' object has no attribute 'transform'

    AttributeError: 'NoneType' object has no attribute 'transform'

    For some reason, I can't use your vectorizers in pipeline. Here is my code:

    pipeline = Pipeline([ 
        ('vect', CountVectorizer(stop_words='en', ngram_range=(1,2), analyzer='word')),
        ('transform', TfIcfVectorizer(sublinear_tf=True)),
        ('clf', LinearSVC(class_weight='balanced')),
    ])
    pipeline.fit(X, y)
    

    And I got the following error:

    D:\programs\Anaconda3\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params) 263 This estimator 264 """ --> 265 Xt, fit_params = self._fit(X, y, **fit_params) 266 if self._final_estimator is not None: 267 self._final_estimator.fit(Xt, y, **fit_params)

    D:\programs\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit(self, X, y, **fit_params) 228 Xt, fitted_transformer = fit_transform_one_cached( 229 cloned_transformer, Xt, y, None, --> 230 **fit_params_steps[name]) 231 # Replace the transformer of the step with the fitted 232 # transformer. This is necessary when loading the transformer

    D:\programs\Anaconda3\lib\site-packages\sklearn\externals\joblib\memory.py in call(self, *args, **kwargs) 340 341 def call(self, *args, **kwargs): --> 342 return self.func(*args, **kwargs) 343 344 def call_and_shelve(self, *args, **kwargs):

    D:\programs\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params) 614 res = transformer.fit_transform(X, y, **fit_params) 615 else: --> 616 res = transformer.fit(X, y, **fit_params).transform(X) 617 # if we have a weight for this transformer, multiply output 618 if weight is None:

    AttributeError: 'NoneType' object has no attribute 'transform'

    My code works fine with TfIdfTransformer.

    Python 3.7.3 sklearn 0.20.3

    opened by Tamplier 2
  • Vectorizers now working with GridSearchCV and Pipelines with parameters

    Vectorizers now working with GridSearchCV and Pipelines with parameters

    Fixes #20 Fixes #21

    By adding sklearn.base.BaseEstimator to all vectorizers they are now capable of handling parameters from GridSearchCV.

    Also, when testing I verified that they already got a "toString" for them, so two problems solved.

    >>> from textvec.vectorizers import TfIcfVectorizer
    >>> TfIcfVectorizer()
    TfIcfVectorizer(norm=None, sublinear_tf=False)
    >>> from textvec.vectorizers import TfBinIcfVectorizer
    >>> TfBinIcfVectorizer()
    TfBinIcfVectorizer(norm='l2', smooth_df=True, sublinear_tf=False)
    
    opened by bernardoduarte 1
  • Using tficf without target Y

    Using tficf without target Y

    I want to get text vectorization using TfIcfVectorizer() without the need to use Y label vector, Is it possible ?

    tficf = vectorizers.TfIcfVectorizer() tficf_train = tficf.fit_transform(cv_train, newsgroups_train.target) # here i should give the vectorizer one argument instead of two tficf_test = tficf.transform(cv_test)

    opened by banyous 1
  • Bump numpy from 1.14.2 to 1.22.0

    Bump numpy from 1.14.2 to 1.22.0

    Bumps numpy from 1.14.2 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Textvec vectorizers doesn't work on GridSearchCV and Pipelines with set_params

    Textvec vectorizers doesn't work on GridSearchCV and Pipelines with set_params

    The code below throws this error:

    AttributeError: 'TfBinIcfVectorizer' object has no attribute 'set_params'

    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.model_selection import GridSearchCV
    from sklearn.svm import SVC
    from sklearn.pipeline import Pipeline
    from textvec.vectorizers import TfBinIcfVectorizer
    
    pipeline = Pipeline([
        ('count', CountVectorizer()),
        ('transformer', TfBinIcfVectorizer()),
        ('model', SVC()),
    ])
    
    param_grid = {
        'transformer__sublinear_tf': (True, False),
        'count__analyzer': ('word', 'char'),
        'count__max_df': (1.0,),
    }
    
    grid_search = GridSearchCV(pipeline, param_grid, n_jobs=-1, verbose=1, refit=True)
    grid_search.fit(train_x, train_y)
    

    If I replace TfBinIcfVectorizer with TfidfTransformer it does work. So it seems that there is something missing on textvec.

    opened by bernardoduarte 0
  • Missing

    Missing "toString" from Vectorizers

    As shown below by the code snippet, scikit-learn's TfidfTransformer for example have a pretty representation when printed, while textvec's TfIcfVectorizer doesn't. It seems that this happens to all of then.

    I'll search for way to do it like scikit-learn does.

    >>> from sklearn.feature_extraction.text import TfidfTransformer
    >>> TfidfTransformer()
    TfidfTransformer(norm='l2', smooth_idf=True, sublinear_tf=False, use_idf=True)
    >>> from textvec.vectorizers import TfIcfVectorizer
    >>> TfIcfVectorizer()
    <textvec.vectorizers.TfIcfVectorizer object at 0x7f88de881490>
    
    opened by bernardoduarte 0
  • Mark TfBNS as solved in README and add it to the Currently implemented methods

    Mark TfBNS as solved in README and add it to the Currently implemented methods

    As from this pull request it seems that TfBNS is now solved from the TODO list on README.md.

    That means that it should be added to the Currently implemented methods and removed from the TODO.

    opened by bernardoduarte 0
  • ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

    ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

    Code:

    ...
    train['title'].isnull().sum() 
    # Out: 0
    title_countvec = CountVectorizer(ngram_range=(1,3), max_features=300000, lowercase=True)
    title_countvec.fit(train['title'], y_train)
    train_title_countvec = title_countvec.transform(train['title'])
    title_vectorizer = TfIcfVectorizer(norm='l2', sublinear_tf=True)
    title_vectorizer.fit(train_title_countvec, y_train)
    train_title_countvec = title_countvec.transform(train['title'])
    np.isfinite(train_title_countvec.data).all(), np.isinf(train_title_countvec.data).any()
    # Out: (True, False)
    train_transformed['title'] = title_vectorizer.transform(train_title_countvec) 
    # Error
    

    Traceback:

    ValueError                                Traceback (most recent call last)
    <ipython-input-72-5fdf9718ecba> in <module>()
    ----> 1 train_transformed['title'] = title_vectorizer.transform(train_title_countvec)
    
    /usr/local/lib/python3.5/dist-packages/textvec/vectorizers.py in transform(self, X, min_freq)
         45         X = X * sp.spdiags(self.k, 0, f, f)
         46         if self.norm:
    ---> 47             X = normalize(X, self.norm)
         48         return X
         49 
    
    ~/.local/lib/python3.5/site-packages/sklearn/preprocessing/data.py in normalize(X, norm, axis, copy, return_norm)
       1410 
       1411     X = check_array(X, sparse_format, copy=copy,
    -> 1412                     estimator='the normalize function', dtype=FLOAT_DTYPES)
       1413     if axis == 0:
       1414         X = X.T
    
    ~/.local/lib/python3.5/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
        429     if sp.issparse(array):
        430         array = _ensure_sparse_format(array, accept_sparse, dtype, copy,
    --> 431                                       force_all_finite)
        432     else:
        433         array = np.array(array, dtype=dtype, order=order, copy=copy)
    
    ~/.local/lib/python3.5/site-packages/sklearn/utils/validation.py in _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite)
        304                           % spmatrix.format)
        305         else:
    --> 306             _assert_all_finite(spmatrix.data)
        307     return spmatrix
        308 
    
    ~/.local/lib/python3.5/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
         42             and not np.isfinite(X).all()):
         43         raise ValueError("Input contains NaN, infinity"
    ---> 44                          " or a value too large for %r." % X.dtype)
         45 
         46 
    
    ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
    
    bug 
    opened by sharthZ23 4
Releases(v2.0)
  • v2.0(Sep 12, 2019)

    Textvec 1.0.1 -> 2.0

    Features

    • SifVectorizer #5
    • Scikit-learn compability #7

    Improvements

    • Better examples #9
    • Unit tests #6

    Bug Fixes

    • Sparse data processing fix #8
    Source code(tar.gz)
    Source code(zip)
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022